Fabrication and Performance of Improved Cavity Shapes for CEBAF

Charles Reece

Thomas Jefferson National Accelerator Facility

New Renascence Cryomodule

- Replacement for an existing CEBAF cryomodule
- Serves also as a prototype for 12 GeV Upgrade
- Based on the "70 MV" cryomodule upgrade design
 - > Two units built and commissioned 2001-2004
- ✤ For 12 GeV :
 - > Need >108 MV CW with 250 W dynamic heat load at 2 K
 - > Eight 0.7 m, seven-cell 1497 MHz cavities
 - Q₀ > 8e9 @ > 19.2 MV/m <u>average</u>
 - > One 13 kW CW klystron per cavity
- Two new, higher performing SRF designs developed
 - > "HG" design best if field emission is the limiting phenomena
 - "LL" design best if non-field emission heat limited

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Renascence Cryomodule

Thomas Jefferson National Accelerator Facility

Renascence

 Need the best cavity designs for application to CEBAF 12 GeV Upgrade

- > Design operating temperature: 2.09 K at cavities
- > 250 W dynamic loss per cryomodule
- > 31 W per cavity
- > 44 W per active meter
- > 460 µA CW beam

Thomas Jefferson National Accelerator Facility

New for Renascence

- HG cavity design
- LL cavity design
- Tuner system
 - Required for HOM damping of HG and LL
 - > Cheaper, built on SNS experience
- HOM rf feedthrough
 - > Adequate conduction cooling of the Nb probe
- Radial-wedge clamp seal
- AIMgSi alloy gaskets rather than indium
 - Particulate control motivation
- Compatible with 13 kW klystrons
 - > Improved thermal stabilization of input waveguide

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

Renascence cavities

HG and LL cavity designs

- HG minimizes E_{peak}/E_{acc}
- LL minimizes heat/E_{acc}
- Identical end groups
 - Fundamental WG coupler Q_e 2e7
 - Two coaxial HOM couplers on each end
 - NbTi interface to Ti helium vessel

HG Prototype Cavity

LL Prototype Cavity

G. Ciovati

Thomas Jefferson National Accelerator Facility

J. Sekutowicz

Cavity cell designs

The cavity designs were reported previously
 "Cavities for JLab's 12 GeV Upgrade" J. Sekutowicz, et al. PAC-03

	00	HG	LL
E _{peak} /E _{acc}	2.56	1.89	2.17
B_p/E_{acc} [mT/(MV/m)]	4.56	4.26	3.74
R/Q [ohms]	678	780	891
G [ohms]	274	266	281
k [%]	1.7	3.3	1.4

- One each HG and LL cavity was prototyped by P. Kneisel
- The HG prototype has been successfully tested see EPAC04 contribution

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

LL Cavity System

Thomas Jefferson National Accelerator Facility

JLab Fabrication

Thomas Jefferson National Accelerator Facility

JLab Fabrication

- The cavities for Renascence were constructed inhouse at JLab using local job shops for component machining
- Built as a production batch
 - > Aimed for "build-to-print" process that yields target frequency and optimum performance
 - > 5 HG cavities
 - 4 LL cavities
 - + 3 more HG cavities funded as FEL option

Thomas Jefferson National Accelerator Facility

Historical perspective: CEBAF Cavities

HG Cavity Performance Tests

12

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

LL Cavity Performance Tests

13

LL and HG cavities

Thomas Jefferson National Accelerator Facility

Supportable Gradient for 12 GeV

Detuning allowance for the LL-shaped 7-cell cavity with loaded-Q and anticipated 13 kW klystrons at several accelerating gradients and 460 μ A beamloading.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy

efferson C

Context and Future

- The Renascence project has run concurrently with the SNS cryomodule production
- Cavity qualification is complete
- String assembly this fall interleaving with SNS work
- Cryomodule assembly early 2005
- Testing next spring, then installation in CEBAF in summer 2005

Thomas Jefferson National Accelerator Facility

For CW operation with modest beam currents (< 1 mA), the challenge for ultimate SRF performance is best Q_0 at ~ 25 MV/m at operational temperature.

- * Apply electropolishing (not scoped for Renascence)
- Post-processing thermal treatment?
- Post-production surface anneal?
 > laser glazing, EB remelt, etc.
- Improved material consistency and control?
- Increasing process consistency and control

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department Of Energy