APS STORAGE RING ORBIT CORRECTION AT 10 HZ

L. Emery

Purpose

To reduce the orbit perturbation from insertion device (ID) gap motion occuring in the overlap frequency band between Real-Time Fast Feedback System (RTFS) and DC Orbit Correction (OC). RTFS bandwidth: 0.025 Hz - 50 HzPrevious OC bandwidth: DC - 0.03 Hz / 0.1 HzNew OC Bandwidth: DC - 0.6 Hz / 1.3 Hz

Towards Higher Correction Rate

Port Toolkit Software (sddscontrollaw) to IOC

EPICS database access instead of CA New IOC is called datapool IOC

Other IOC Software

Use reflective memory network from RTFS Vectorized computations of beam position monitor (BPM) readback IOC processor permits up to 30 Hz iteration

Data Flow in Datapool IOC

All BPM and Correctors available for both ioc- and workstation-based OC RTFS has access to all BPMs but only 1 corrector per sector

sddscontrollaw Software Improvement

Added waveform PV capability Loop parameters modifiable through EPICS while loop is closed

Integration with RTFS

Frequency band overlap compensation: Calculate new BPM setpoint deltas to RTFS

External Processes

Test out-of-range PVs. Transfer "scalar" BPM offsets and setpoints to waveform PVs.

Typical Configuration

H-plane: 80 correctors, all rf bpms + Xray bpms V-plane: 80 correctors, 80 rf bpms + Xray bpms Iteration Interval: 0.1sec / 0.05 sec Gain: 0.4 Bandwidth: DC – 0.6 Hz / 1.3 Hz

Result of 10 Hz Rate

Orbit perturbation reduced as expected

High-Level Software

Split work in smaller GUIs: 1) Good and Bad device configuration 2) Configuration creation

- 3) Correction control
- GUIs configurable for different mdes Same GUIs for workstation and

datapool IOC OC (and RTFS).

