

Accelerator Reliability and Enhancement at the APS

Rod Gerig

The University of Chicago Review for the Advanced Photon Source at Argonne National Laboratory

September 17-19, 2003

Outline of Presentation

- Accelerator Scheduling
 - Special Operating Modes
- Availability and Reliability Statistics
- Approaches to Accelerator Availability Improvements
- Approaches to Accelerator Performance Enhancements

APS Operational Schedule for FY2004

APS FY 2004 Long Range Operations Schedule (October 2003 - September 2004)

Tentative

Run 2003-03 Run 2004-01 Run 2004-02

Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept
1 4	1 3 →	1	1	1 4 →	1	1	1	1	1	1	1
2 4 →	2 3 →	2	2	2 4 →	2 4 →	2	2	2	2	2	2
3 4 →	3 3 →	3	3	3	3 4 →	3	3	3	3	3	3
4 4 →	4	4 1 →	4	4	4 4 →	4	4	4	4	4 1 →	4
5 4 →	5	5 1 →	5	5	5 4 →	5	5	5	5	5 1 →	5
6 4 →	6	6 1 →	6	6	6 4 →	6	6	6	6	6 1 →	6
7 5 →	. 7	7 1 →	7	7	7 4 →	7 1 →	7	7	7 4 →	7 1 →	7
8 5 →	8	8 1 →	8	8	8 4	8 1 →	8	8	8 4 →	8 1 →	8
9 5 →	9	9 1 1	9	9	9	9 1 →	9	9	9 4 →	9 1 →	9
10 5 →	10	10 1 →	10	10	10	10 1 →	10	10	10 4 →	10 1	10
11 5 →	11	11 1 →	11	11 3 →	11	11 1 →	11	11	11 4 →	11	11
12 5 →	12 4 →	12 1 →	12	12 3 →	12	12 1 →	12	12	12 4 →	12	12
13 5	13 4 →	13 1 →	13	13 3 →	13	13 4 →	13	13	13 4	13	13
14	14 4 →	14 1 →	14	14 3 →	14	14 4 →	14	14	14	14	14
15	15 4 →	15 1 →	15	15 3 →	15	15 4 →	15	15	15	15	15
16	16 4 →	16 4 →	0	16 3 →	16	16 4 →	16	16	16	16	16
17	17 4 →	17 4 →	17	17 3	17	17 4 →	17	17	17	17	17
18	18 4	18 4 →	18	18	18	18 4 →	18	18	18	18 4 →	18
19	19	19 4 →	19	19	19	19 4 →	19	19	19	19 4 →	19
20	20	20 4 →	20	20	20	20	20	20	20	20 4 →	20
21	21	21 4 ->	21	21	21	21	21	21	21	21 4 →	21
22	22	22	22	22	22	22	22	22	22	22 4 →	22
23	23	23	23	23	23	23	23	23 3 →		23 4 →	23
24	24	24	24	24	24	24	24	24 3 →	24	24 4 →	24
25	25	25	25	25	25	25	25 4 →	700	25	25 4 →	25
26	26	26	26	26	26	26	26 4 →	26 3 →	26	26	26
27	27	27	27	27	27	27	27 4 →	27 3 →	27	27	27
28	28	28	28	28	28	28	28 4 →	28 3 →	28	28	28
29 3 →		29	29 4 →	29	29	29	29 4 →	29	29	29	29
30 3 →	30	30	30 4 →		30	30	30 4 →	30	30	30	30
31 3 →	_	31	31 4 →		31		31 4 →		31	31	

Top-up User Operation in low emittance mode Non top-up User Operation Fill pattern is 24 singlets unless

SOM Periods

- 1 Hybrid Fill (singlet)
- 2 Hybrid Fill (triplet)
- 3 110 mA Low E. singlets
- 4 324 Singlets Low E. Fill

5 23 Singlets - Low E.

Machine Studies Maintenance Shifts set aside for Studies/ Machine Intervention as Needed Weekends

otherwise indicated

Routine Top-Up User Operation

Fill pattern:

- 24 singlets (single bunch) with a maximum current of ~4.25 *mA* and a spacing of 153 *nanoseconds.* (Until FY2004, this mode was 23 singlets with 306 *nanosecond* gap between last and first bunch. The 23-bunch mode is now called **SOM5**).

Lattice configuration:

 Low horizontal emittance operation with a nominal effective emittance of 3.1 nm-rad and coupling of ~2.5%.

Refill schedule:

- Continuous top-up with refills occurring at a minimum of two minute, or a multiple of two minute, intervals - (i.e., 2, 4 or 6 minutes between refills).
- Occasionally will use this mode with ~115 mA (SOM3).

Special Operating Mode 1 (SOM1) – Hybrid Fill (Singlet)

Fill pattern:

A single bunch containing a maximum of 5 mA isolated from the remaining bunches by symmetrical 1.59 microseconds gaps.
 The remaining current is distributed in 8 groups of 7 consecutive bunches with a maximum current of 12 mA per group and a spacing of 48 nanoseconds between groups.

Lattice configuration:

- Low horizontal emittance operation with a nominal effective emittance of 3.1 *nm-rad* and coupling of ~0.5%.

Refill schedule:

- Continuous top-up with refills occurring at a minimum of two minute, or a multiple of two minute, intervals - (i.e., 2, 4 or 6 minutes between refills).

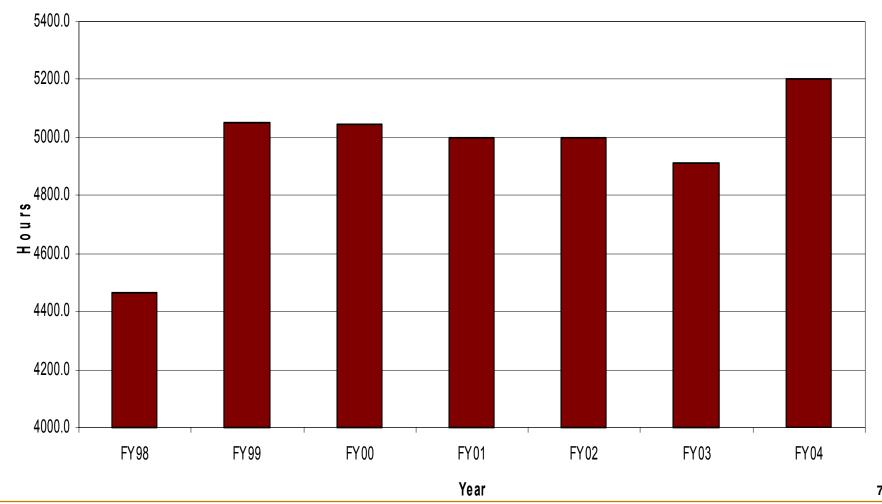
Special Operating Mode 4 (SOM4) – Low-Emittance Fill

Fill pattern:

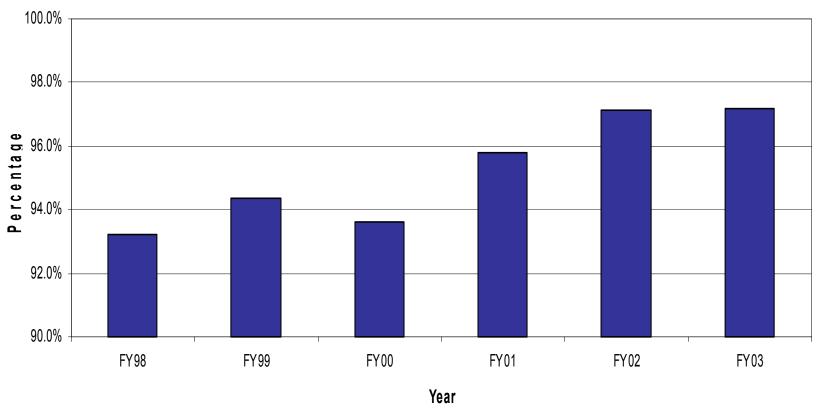
- 324 uniformly spaced singlets with a nominal current of 0.31 mA, and a spacing of 11.37 *nanoseconds* between singlets.

Lattice configuration:

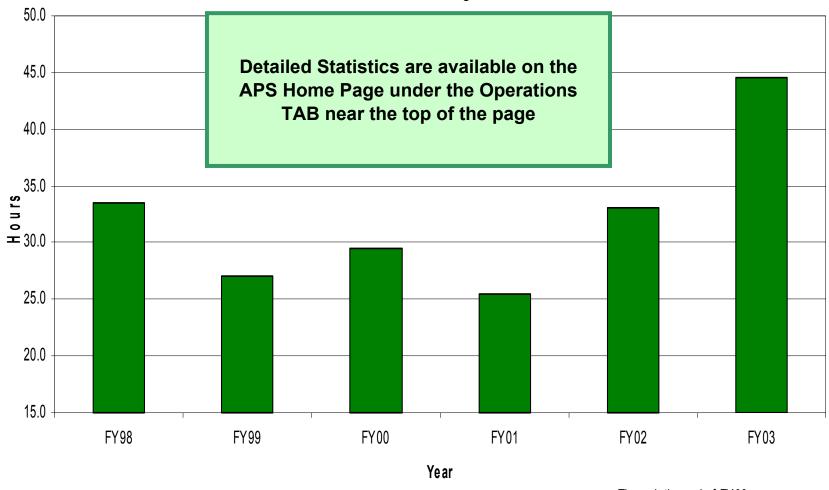
- Low horizontal emittance operation with a nominal effective emittance of 3.1 *nm-rad* and coupling of ~ 2.5%.

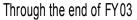

Refill schedule:

Fill-on-fill two times per day, nominally at 7:45 AM, 7:45
 PM. Lifetime is expected to be > 75 hours. There should be
 > 85 mA remaining at the time of each refill.


APS Scheduled User Hours

APS Run History Operational Statistics X-ray Availability Data from FY1998 through Present




Through the end of FY03

APS Run History Operational Statistics Average Fill Duration Without a Fault (MTBF) Data from FY 1998 through Present

Availability Strategy

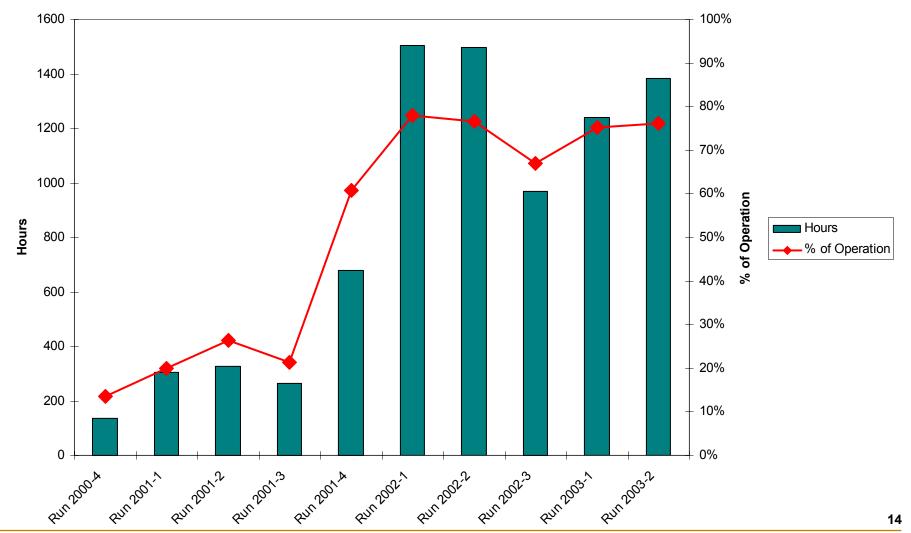
- Mean Time to Recovery is approximately 1 hour (median time to recovery is less than .5 hours). Therefore, the only substantial improvements that impact scientific output are those that reduce the fault rate.
 - Increased effort to identify root causes of faults, both system-wide (goal of no "Unknown Beam Loss") and improved hardware diagnostics to identify problematic component
 - A change has been made (2003) in our strategy; we now replace tripped components upon first trip
- Concurrently, we focus on the prevention of catastrophic failures.

Fault Reduction (Run 2003-1 as Example)

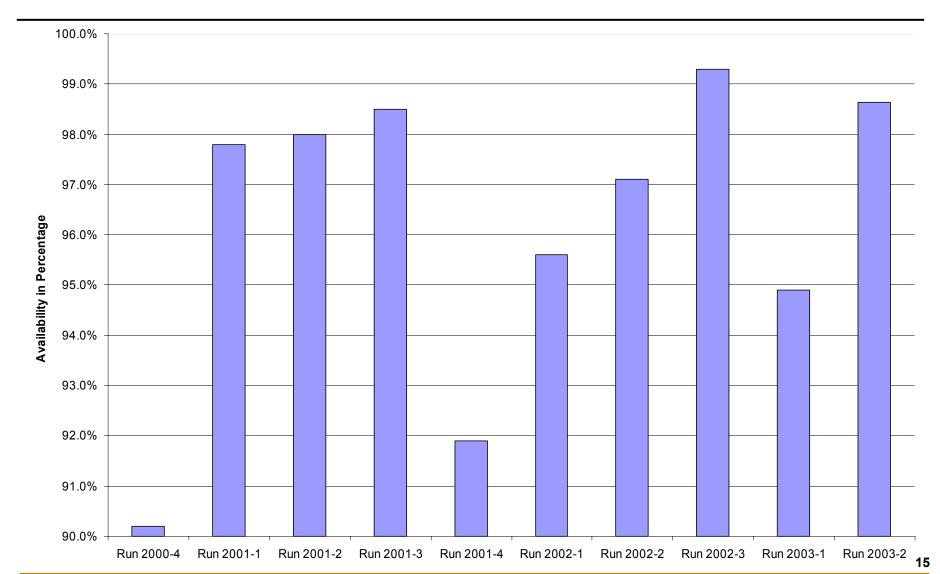
Fill				Fault	
Number	Time of Fault		Fault text	Group	
# 1	01/30 07:44	23.75	Correct P0 Err.	[CTL]	module failed (cold solder joint found later), replaced with spare
# 40	02/26 16:48	5.71	IOCRFTime problem	[CTL]	Caused by GPIB link/devices that are no longer used in operation.
# 41	02/26 23:49	6.14	IOCRFTIME problem	[CTL]	Devices and GPIB link removed
# 64	03/12 15:54	7.9	VacValve VM-39-VV02	[CTL]	Normal valve trip. The chassis for this particular valves
# 73	03/29 09:50	59.28	S39:VV01 Valve trip	[CTL]	will be replaced this shutdown.
# 23	02/15 11:09	75.16	1ID BPLD trip	[DIAG]	
# 25	02/15 11:28	0.04	1ID BPLD trip	[DIAG]	Debate with rf group over trips, improve rf diagnostics??
# 26	02/15 14:26	2.58	1ID BPLD trip	[DIAG]	
# 89	04/15 15:40	7.65	iocs31bpm reboot	[DIAG]	MPS card in IOC, so power down to reset IOC breaks timer to MPS
# 90	04/15 18:02	1.85	2ID BPLD fault	[DIAG]	
# 93	04/16 17:57	8.24	2ID BPLD fault	[DIAG]	
# 94	04/17 11:58	17.33	2ID BPLD fault	[DIAG]	All during 324 bunch operation, improve BPLD
# 96	04/17 21:23	8.96	2ID BPLD fault	[DIAG]	
#103	04/20 21:46	14.8	2ID BPLD fault	[DIAG]	
# 31	02/19 02:52	10.86	S9BQ2 failure	[ES]	Converter replacement, solder joint problem
# 57	03/10 01:28	65.56	S32B:Q5 converter	[ES]	Water header backflushed
# 65	03/17 01:25	105.26	S33B:V1 problem	[ES]	Converter noisy near zero; new design, underway, will solve
# 69	03/21 12:26	26.04	2ID PSS trip	[ES]	UPS failure, major UPS upgrade underway
# 72	03/26 21:22	13.37	S15B:MT trip	[ES]	TBD
# 86	04/09 11:34	3.55	15ID PSS fault	[ES]	Replaced control power supply with larger capacity unit
# 91	04/16 08:31	13.62	ACIS relay fault	[ES]	Unknown
# 98	04/20 05:27	51.92	S36AQ5 failure	[ES]	Converter Swapped, failure not understood
# 4	02/02 02:28	58.41	18ID Rad. Mon. Trip	[HP]	
# 74	04/01 04:25	66.19	Spurious RadMon.trip	[HP]	
# 80	04/05 16:13	54.94	5ID Rad.Mon.failure	[HP]	
# 87	04/13 09:30	92.82	10ID Rad.Mon. Err.	[HP]	
# 43	03/01 12:17	18.42	Rad.mon.trip @inj.	[OPS]	
# 55	03/07 07:44	19.38	Bunch purity	[OPS]	
# 81	04/06 14:02	19.73	Rad.trip @ refill	[OPS]	

Fault Reduction - Continued

# 3	01/30 13:59	5.38	line power bump	[OTHER]	Both trips due to salt contamination	
# 50	03/06 11:22	51.36	Power bump	[OTHER]	on a ComEd 138kV transmission line	
# 15	02/07 08:34	72.38	rf4 Vac trip	[RF]	T	
# 16	02/07 16:19	7.02	rf4 IIrf trip (was vacuum)	[RF]		
# 18	02/09 13:36	43.48	rf4 Vac trip	[RF]		
# 27	02/15 15:44	0.91	S37 Cav. Vacuum	[RF]		
# 28	02/15 18:14	1.77	RF4 sideband	[RF]	Vacuum trip due to cavity venting	
# 29	02/15 18:36	0.06	RF4 sideband	[RF]		
# 35	02/24 00:21	30.4	S40 Cav.Vac. trip	[RF]		
# 70	03/22 04:07	15.08	RF4 cav.Vac.Flt	[RF]		
# 77	04/02 16:38	22.25	S40 cav.vac trip	[RF])	
# 32	02/20 05:39	25.56	RF2 crowbar trip	[RF]	Faulty di/dt circuitry (fixed on 3/4/03).	Done
# 17	02/07 17:25	0.73	Beam Instability	{RF]		
# 33	02/22 17:20	59.45	RF2 crowbar trip	[RF]	Faulty di/dt circuitry (fixed on 3/4/03).	Done
# 34	02/22 17:41	0.04	RF2 crowbar trip	[RF]		
# 38	02/26 09:50	1.83	RF3 loss due to RF2	[RF]	Faulty di/dt circuitry + power monitor fault (fixed on 3/4/03)	Done
# 39	02/26 10:55	0.55	RF3 loss due to RF2	[RF]		
# 42	02/28 17:27	41.36	RF3 loss due to RF2	[RF]	Faulty di/dt circuitry + power monitor fault (fixed on 3/4/03)	Done
# 48	03/03 09:18	37.37	RF3 HVPS trip	[RF]	RF2 Power monitor fault turned off RF3 too fast. Fixed	Done
# 68	03/20 10:06	42.1	RF4 Power loss	[RF]	RF4 Power monitor major fault - changed PM on 04/07.	Done
# 78	04/03 09:04	15.73	RF4 lost power	[RF]	RF4 Power monitor major fault - changed PM on 04/07.	Done
# 10	02/02 05:45	0.77	22ID BPLD trip	[UKN]		
# 45	03/01 18:54	6.27	22ID BPLD trip	[UKN]		
# 47	03/01 19:45	0.62	Unknown beam motion	[UKN]		
Red Tex	t: Faults occurred	within one	hour of previous fill and did	not count in	overall MTBF	


Reliability – Availability Initiatives

- Storage ring rf test stand Test and condition components before installation in ring (poster sessions)
- Continuous improvement on SR rf systems
- PS converter improvements (poster)
- Replacement of vacuum valve controllers
- Replace / upgrade radiation monitors
- PAR obviation (see poster on "Direct Injection to Booster")
- Robustness in power bumps
- Improvements to beam position interlock system (poster)
- Improved hardware diagnostics

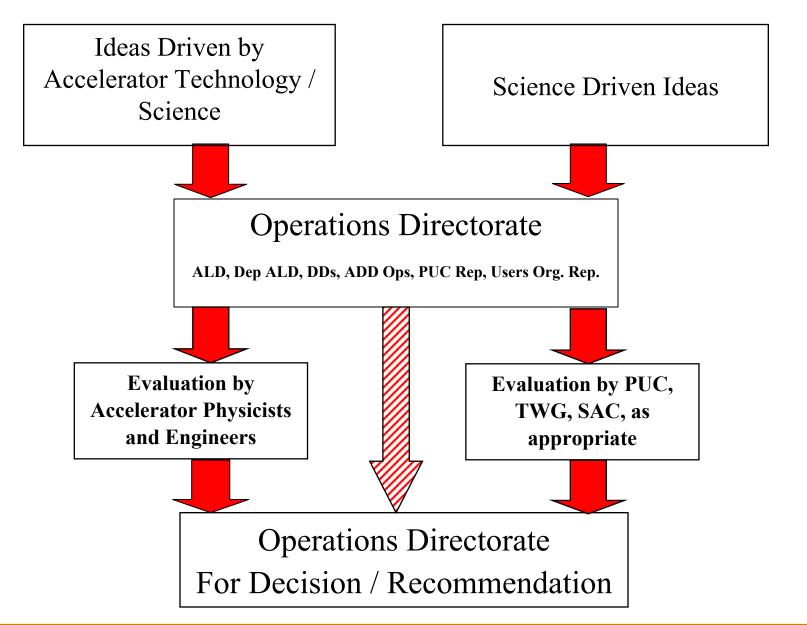

Hours of Top-Up Operation

Injector Availability During Top-Up Operation

Accelerator Enhancements

Implemented: 1996 - Present

- Top-up operation
- Reduced beta lattice for small-gap ID chambers
- Reduced natural emittance (8.0 nm-rad → 2.5 nm-rad)
- Canted undulator design allowing two beams from single straight section
- Beam stability



Future Enhancements

- Process has been developed to identify and prioritize accelerator enhancements to best address needs of scientific community.
- Accelerator enhancement ideas come from:
 - Accelerator community
 - User community
- Accelerator enhancements can improve scientific capability for some users while reducing it for others.

Enhancements Under Consideration or Implementation

- Higher current
- Longer straight section implementation (IXS)
- Increase single-bunch current (poster session)
 - Flexibility in fill pattern
- Shorter x-ray pulses

