

Insertion Device Research and Development

Liz Moog

The University of Chicago Review for the Advanced Photon Source at Argonne National Laboratory

September 17-19, 2003

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Introduction

The properties of a user's insertion device determine characteristics of the x-ray beam, such as:

- Range of x-ray wavelengths produced
- Brilliance
- Power (heat load)
- Harmonic content
- Polarization

An appropriately-chosen insertion device that is working as designed is critical to the effectiveness of a beamline!

Planar Insertion Devices

- New period lengths
- Superconducting undulator
- Variable Period undulator
- Circular and variable polarizing undulators
- Other sector and front-end improvements
- Radiation damage to ID magnets

IDs Installed as of June 2003

Туре	Number	Length	K _{eff}
		(periods)	
33-mm undulator	23	72	2.75
33-mm undulator	2	62	2.75
55-mm undulator	1	43	6.57
27-mm undulator	1	88	$1.70; \ 2.18^{\text{F}}$
27-mm undulator	1	72.5	$1.36; \ 1.80^{\text{F}}$
18-mm undulator	1	198	0.455
Elliptical wiggler	1	18	$K_{v}=14.7^{\dagger}$
(16 cm)			
Circularly polarized	1	16**	K _v Š2.86
undulator (12.8 cm)			K _x Š2.75

Device length includes the ends - approx. one period at each end is less than full field strength.

K value is at 10.5 mm gap unless stated otherwise. (CPU and horizontal elliptical wiggler field are electromagnetic, with different fixed gaps.) † at 24 mm gap (the device minimum). Values are for peak K, not K_{eff} ¥ at 8.5 mm gap.

** In addition to this, there are separate correctors at both ends.

Tuning Curves for Different Period Lengths

APS: 3.5 nm-rad, 1.0%, 100 mA, 2.7 cm ... 3.3 cm; L=2.1 m 10²⁰ 3.30 cm Se K edge Br K edge 2.70 cm 2.90 cm On-Axis Brilliance (ph/s/mrad²/mm²/0.1%bw) 3.00 cm 3.10 cm 10¹⁹ 10¹⁸ 10 20 30 50 40 0 Energy (keV)

Power vs. Photon Energy for Different Period Lengths

6

Office of Science U.S. Department

of Energy

Model for Superconducting Undulator

Test Piece for Superconducting Undulator

Tuning Curves Show Benefit of Superconducting Undulator for 20-25 keV

Schematic of Poles and Solenoid for Variable Period Undulator

Magnetic Field Map Calculation

period=2cm, pole width=1.13cm, gap=0.6cm

Tuning Curve Compared to Standard Undulator

Variable Period Undulator - Power

Circularly Polarized Undulator

Shown in cross-section.

- •12.8 cm period
- •500-3000 eV output
- •circular polarization, both left and right
- •linear polarization, both vertical and horizontal
- •switchable polarization
- •compatible with standard ID vacuum chamber, so it can share a straight section

•open along one side for access by magnetic measurement probes

Pioneering

Science and Technology

Advanced Planar Polarized Light Emitter II Undulators

Schematic view of the magnetic structure for generating variably polarized undulator radiation. $D=\lambda_u/4$.

APPLE-Style Undulator Issues

Many APPLE-style undulators installed at rings around the world

Challenges accompanying APPLE-II undulator:

Field varies with transverse position => beam focusing

Advantages of APPLE-II undulator:

- Flexibility
- Linear or elliptical polarization
 - Higher harmonics also produced
- Circular polarization
 - Low power on axis
 - Only first harmonic produced

Power Distribution from APPLE Undulator

Circular Mode: Lower Power But Still Bright

Dual Canted Undulators

- Three new sectors
- Two ID beamlines from single straight section
 - 3 dipoles create chicane with 1 mrad offset
- Shared FE transports two beams
 - Designed for operation at 200 mA, 20.4 kW total power

New High-Heat-Load Front End for In-line Undulators

Maximum power load: 21 kW Maximum power density: 590 kW/mrad²

Can accommodate:

- Two in-line Undulators A at 3 keV (10.5 mm gap), 180 mA (Nano-CAT)
- Three in-line Undulators A at 5 keV (14 mm gap), 150 mA (IXS-CAT)

To be installed Sept. 2004 for IXS-CAT and Jan. 2005 for Nano-CAT

Office of Science

U.S. Department

of Energy

Run 2003-1 ID dose in Megarads

Dose in Sector 3 is very high at nearly 10 Mrad!

U27#12 Damage Sequence

Damage Distribution in Magnet Block

Computer-Controlled Pulsed Magnetizer

- •Automated reverse-field treating, guided by Hall probe
- •Nominal maximum field: 35 kOe
- •Pulse width: 9.4 ms
- •Max magnet size: 90 x 58 x 27 mm
- •Capacitor cycle time: <15 s

Power supply and control system

Summary

We are working to design shorter period undulators:

- •Permanent magnet
- Superconducting
- Variable period
- **APPLE-style undulators**
- New higher power front ends
- Radiation damage:
 - Retuning has kept undulators working
 - Now more extensive repairs are possible
 - But the frequent repairs and retuning in Sector 3 are a burden

