

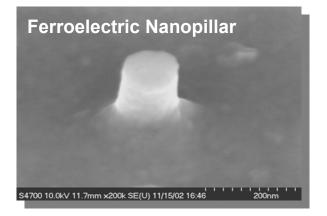
The Center for Nanoscale Materials and Nanosciences at ANL

Eric Isaacs

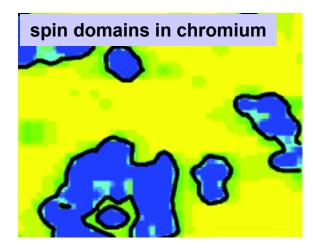
The University of Chicago Review for the Advanced Photon Source at Argonne National Laboratory

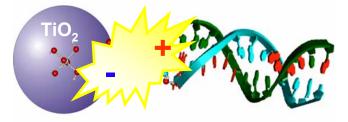
September 17-19, 2003

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago



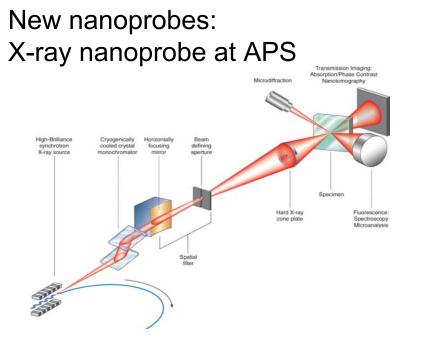
- Introduction to the Center for Nanoscale Materials (CNM)
 - Collaborative access facility
- Nanoscience research at CNM and ANL
 - Scientific highlights

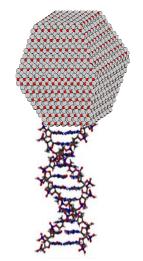



The Vision of Nanoscience ...

New geometries, [quantum] confinement, proximity...

Nano-phases in bulk

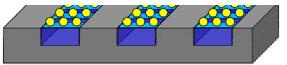

Novel composites: bio-inorganic integration



3

Built on Novel Modeling, Synthesis, and Characterization Tools

Simulate atom-by-atom, multi-scale modeling, integration


Novel fabrication: lithographically assisted self-organization

Pioneering

Science and

echnoloav

n-Mag array on PMMA templates

U of C Review of the Advanced Photon Source, September 18, 2003

Laying the Foundations for Future Nanotechnologies...

Nanostructured materials "by design"

- Stronger, lighter, harder, self-repairing, and safer

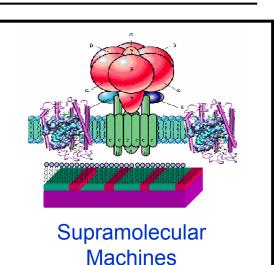
Smaller, better, faster, cheaper electronics

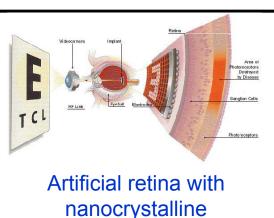
- Bio-electronics, optoelectronics, and magnetics
- Computers and memory, communication devices

Environment, safety, energy efficiency/security

- Catalysis

Pioneering


Science and


echnoloav

Advanced nanodevices for sensors

- Chem/bio analysis
- Homeland security

Advanced healthcare, therapeutics, and diagnostics

diamond electrodes

5

What is the Center for Nanoscale Materials?

Collaborative Access Facility for Nanoscience Research

- Exciting science, new nanomaterials, novel nanodevices
- Facilities for synthesis and characterization of nanomaterials
 - Operated by staff expert in techniques
 - Development of new nanoinstrumentation, including a new nanoprobe beamline at the Advanced Photon Source
- Open access for internal and external users
 - best science peer review access like APS
- Brings new science and capabilities to ANL, the region, and the nation
- Leverages Argonne's and regional strengths

Center for Nanoscale Materials Building

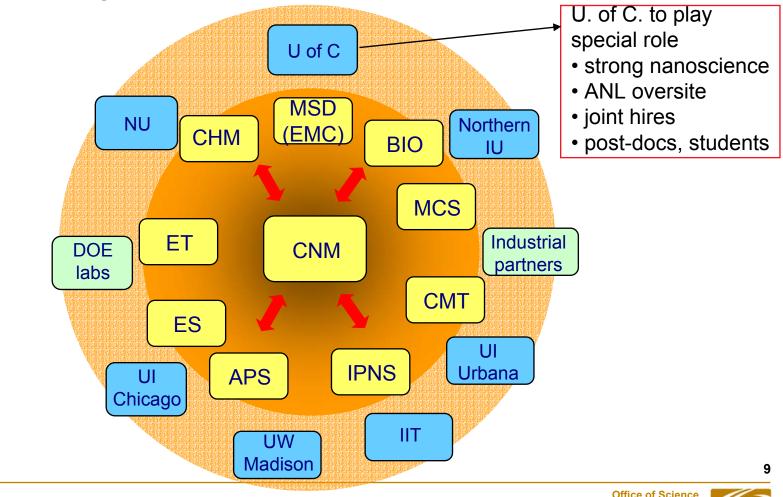
~85,000 gross square feet, including: 13,000 sq ft laboratories 11,000 sq ft cleanroom facilities •33,000 sq ft offices and public spaces \$36 M Building construction (FY06) Instrumentation (FY04 start) \$36 M DOE \$18M / year **Operations (FY06 start)**

Pioneering Science and echnoloav

DOE

Office of Science **U.S. Department** of Enera

Initial CNM Programmatic Focus Areas


- The Bio-Inorganic Interface (D. Tiede, MSD)
- *n*-Carbon (*D. Gruen, MSD*)
- *n*-Magnetism (S. Bader, MSD)
- Complex Oxides (O. Auciello, MSD)
- Nanophotonics (G. Wiederrecht, CHM)
- The Virtual Fab Lab (S. Gray, CHM, and P. Zapol, MSD)

Center for Nanoscale Materials Partnerships

 Interdisciplinary research – CNM will play a powerful role at ANL and beyond in driving multi-divisional/institutional collaborations

Office of Science U.S. Department of Energy

ANL partnerships with CNM

- World-class nanoscience research
- Gateway for CNM users
- APS provides successful user access model
 - General users, partner users, "one-stop shopping,"...
- Electron Microscopy Center (EMC) and TEAM (MSD)
- Founding Directors Murray Gibson, Sam Bader
- CNM project managers
 - Nanolithography and processing Leo Ocola (APS, CNM)
 - CNM Project Manager Derrick Mancini (APS)
 - X-ray Nanoprobe beamline at APS Brian Stephenson (MSD)
 - Nanosynthesis and characterization Steven Streiffer (MSD)
- CNM scientific theme leaders
 - Orlando Auciello, Dieter Gruen, Sam Bader, Peter Zapol
- Hiring of CNM distinguished post-docs
 - Amanda Barnard, Dolly Batra, Yi Gi, Oliver Williams
- Joint hires/appointments

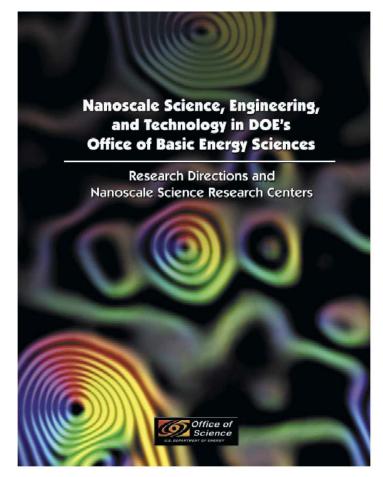
Leveraging CNM Partnerships for Funding

Establishing CNM user community

- \$1.5 M DOE funding to "jumpstart" user programs (ramps to \$18 M, FY06)
- State of Illinois \$36 M for CNM building
- ANL LDRD funds to seed nanoscience research
- DOE funding in partnership with APS, ANL divisions and universities

Partnerships with other DOE labs

- zone-plate development (BNL, LBNL and Lucent)
- synchrotron-based, low-T facility (BNL)
- Consortium for Nanoscience Research (CNR) outside funding in collaborations with regional universities - NSF, DOD, DARPA, etc.
- Industrial partnerships/users (TBD)


CNM is one of DOE/BES' Five Nanoscale Science Research Centers

- Lawrence Berkeley: Molecular Foundry
- Sandia/Los Alamos: Center for Integrated Nanotechnologies (CINT)
- Oak Ridge: Center for Nanophase Materials Sciences (CNMS)
- Brookhaven: Center for
 Functional Nanomaterials (CFN)
- Argonne: Center for Nanoscale Materials (CNM)

Pioneering

Science and

echnoloav

www.science.doe.gov/bes/NNI.htm

CNM is Opening for Business

A.U.S. DOE Nanoscale Science Research Center

"One Scientific Community Focused on Nanoscience Integration"

Home The Center for Nanoscale Materials (CNM) at Argonne About CNM National Laboratory is a U.S. Department of Energy (DOE), Office of Science, Nanoscale Science Research Facilities Center, one of a new generation of national user facilities Research with the mission to advance the basic science behind nanotechnology and to actually begin fabricating Becoming a User nanomaterials. Working at CNM CNM Post-Docs Argonne's CNM will support all stages of research and and Fellowships development on nanoscale materials, from synthesis and Publications patterning through metrology, compositional and structural determination, physical phenomena News/Highlights characterization, and fabrication. The CNM uses the Upcoming Events synchrotron x-ray facilities at Argonne's unique Advanced Photon Source and will complement the Laboratory's People world-class capabilities in materials science, chemistry, Contact Us physics, biology, and engineering. Construction Project Status As a DOE user facility, the CNM will leverage Argonne's DOE/BES Nanoscale unique major users and facilities to facilitate vital new Science Research Centers collaborations and partnerships across a wide range of scientific and technological disciplines. Argonne's Other DOE-BES **User Facilities** multidisciplinary approach to nano-related research will

multidisciplinary approach to nano-related research wi ensure the best ideas evolve into many remarkable investigations and discoveries to support our nation's goals and strategic interests.

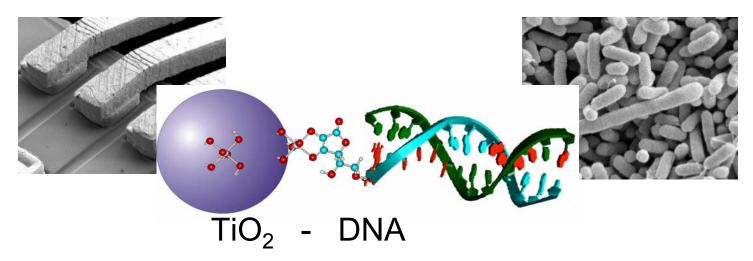
- <u>Welcome from the Director</u>
- General Policies and Procedures for User Access (22kb pdf)
- <u>Nanoscience Research Summer School</u>, August 3 10, 2003

DOE/BES

http://nano.anl.gov

U of C Review of the Advanced Photon Source, September 18, 2003

Initial CNM Scientific Themes


- The Bio-Inorganic Interface
- ✤ *n*-Carbon
- ✤ n-Magnetism
- Complex Oxide
- Nanophotonics
- The Virtual Fab Lab
- Major fabrication and characterization tools in CNM
 - X-ray Nanoprobe beamline at APS

The Bio-Inorganic Interface

Bio-Inorganic Composites - Creating New Classes of Materials

Objective: To design and synthesize nanostructured biocomposites that combine the unique features of biomaterials and inorganics

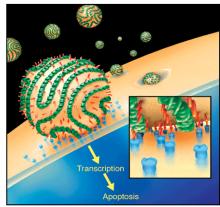
Challenges:

- Formation of functional arrays of biomolecules, proteins, etc.
- Integration of soft and hard materials

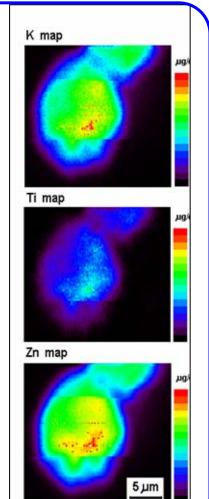
Pioneering

cience and

Sequential coupling of processes to create functional components


Example of X-ray Fluorescence Imaging at the APS: TiO₂-DNA Nanocomposites in Cells

- Map Ti distribution using XRF, to quantify the success of transfection and visualize target of nanocomposite
- Here, affinity of transfected DNA for ribosomes causes localization to the nucleolus
- Hard X-ray Nanoprobe will allow such imaging at 30 nm resolution, significantly improving applicability to nanoscience


T. Paunesku *et al.*, to appear in *Nature Materials* (Northwestern/ANL collab.)

TiO₂-DNA Nanoparticles for *in vivo* Gene Surgery

X-ray elemental imaging of the cell chromosome showing location of the single stranded DNA-TiO₂ nanoparticle

DNA-nanoparticle crossing cell wall

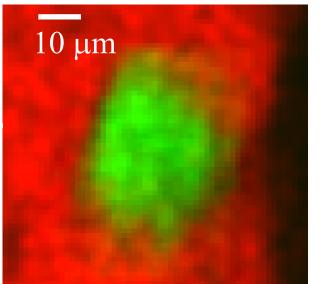
Office of Science

U.S. Department

of Energy

Develop methods to assemble magnetic constituents at the nanoscale so as to control spin interaction and communication

- Goal: The quest for magnetic electronics (spintronics) involves basic research to harness the spin as well as the charge of the electron to create new functionalities
- **Scope:** Explore cutting-edge pathways to create and characterize novel magnetic nanostructures



Examples of Magnetic Domain Imaging at the APS

Antiferromagnetic domains in Chromium

SmCo spring magnet

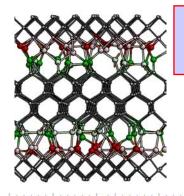
Hard X-ray MCD @ 4ID

J. Pollmann et al JAP **89**, 7165 (2001).

Office of Science

U.S. Department

of Energ

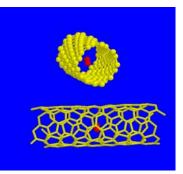

18

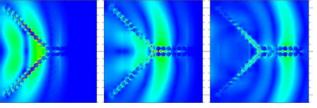
Hard X-ray μ-diffraction @ 2ID P. G. Evans et al.,

Science 295, 5557, 1042-1045 (2002)

Virtual Fab Lab – Theory and Simulation

Pioneering

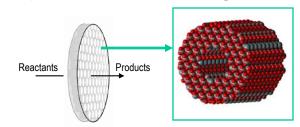

cience and


Create new nanomaterials with user-defined properties using theory and simulations

Nanocarbon materials: Electronic structure calculations (nanodiamond, nanotubes...)

Bioinorganic interfaces: Quantum

S. Gray, et al, PR B 68, 045415 (2003).
P. Zapol, et al, PRB 65, 045403 (2002).



chemical studies

Nanophotonics: Time domain electrodynamics simulation of light propagation in metal nanoparticle arrays

Nanocatalysis: Reaction mechanisms, pore structure, kinetics, diffusion, reactor (*multi-scale modeling*)

Enabling Nanoscience through Technical Capabilities

Synthesis

- Self-assembly (chemical, electrochemical, size-selected nanoparticles, etc.)
- Thin-film synthesis

Sculpting

Pioneering

Science and Technology

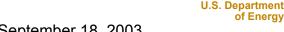
- Nanolithography, nanoinprint
- Milling and etching

Characterization

- Investigate the synthetic process
- Explore chemistry, physics, materials structure & properties

Theory and Simulation

 Leverage resources from ANL's petaflop initiatives and DOE/SC computing infrastructure investment



AFM Signal

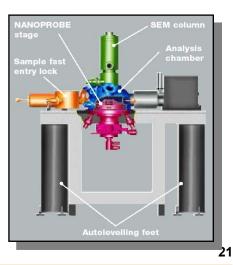
Apertureless NSOM

Office of Science

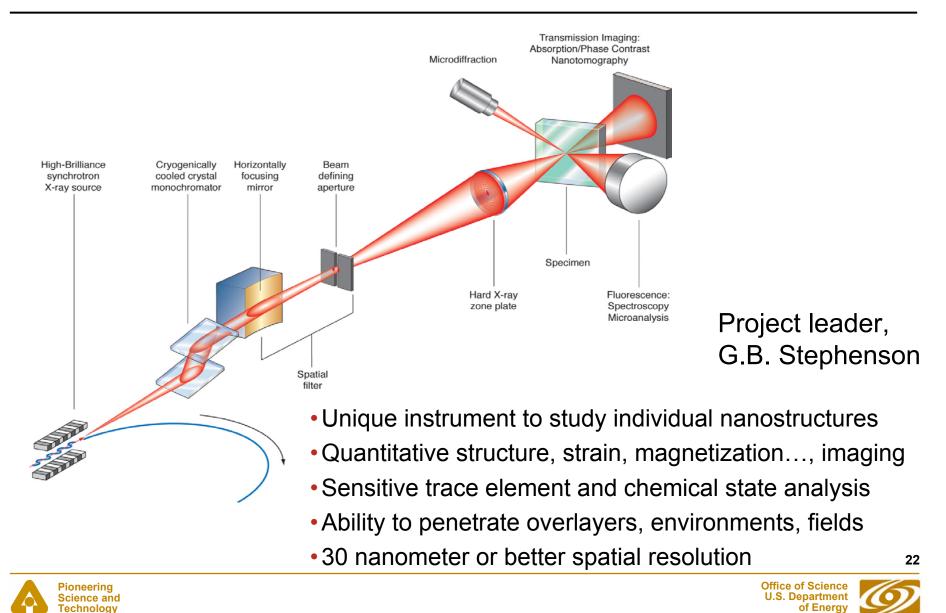
U of C Review of the Advanced Photon Source, September 18, 2003

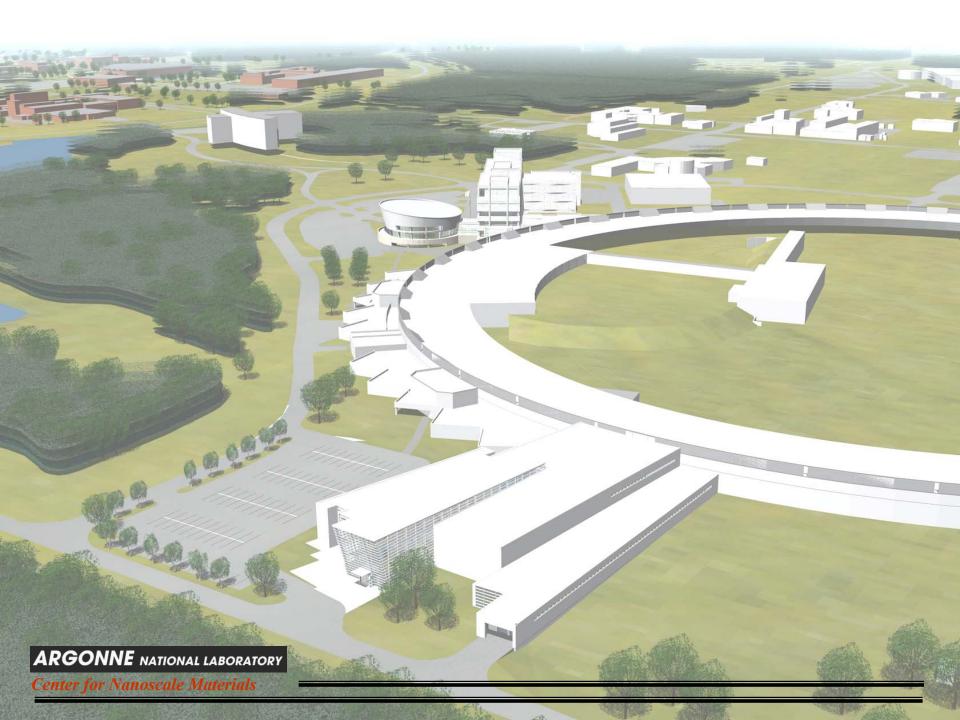
Key Fabrication and Characterization Tools...

e-beam lithography L. Ocola


Representative Example: JEOL 9300FS at Bell Labs New Jersey Nanotechnology Consortium

Combined SEM/SPM S. Streiffer


Electron Microscopy Center (MSD) TEM, TEAM...



The Hard X-ray Nanoprobe at the APS

