Hard X-ray Microscopy Activities at Spring-8

-from sub- μ m to nm size probing -

Yoshio Suzuki SPring-8/JASRI

JASRI/SPring-8,

M. Awaji, A. Takeuchi, H. Takano,

AIST,

S. Tamura, M. Yasumoto,

Kansai Med. School

N. Kamijo,

NTT-AT,

H. Takenaka.

Introduction and Overview

Optics:

Fresnel Zone Plate, Sputtered-sliced FZP, Total-reflection mirror, Refractive lens., etc.

Beamlines:

BL47XU (Microbeam, Imaging Microscopy, Computer Tomography)
BL20XU (Microbeam, Holography, Interferometer, etc.)
BL20B2 (CT, Topography, Medical Imaging, etc.)
BL37XU (Fluorescent X-ray Micro-analysis)

Energy range:

6-113 keV,

"Spatial resolution of $< 0.5 \mu m$ has been achieved with all the optics, and the best resolution is < 100 nm."

Experimental Setup of X-ray Microbeam/Scanning Microscopy

E₂ at BL20XU

at BL20XU

Typical Setup for Mirobeam Experiment with Fresnel Zone Plate Optics

Specification of Fresnel zone plate

Diameter: 150 µm, Designed focal Length: 100 mm at 8 keV,

Outermost zone width (dN): 0.1 µm.

Diffraction limit (=1.22 d_N): 0.12 μ m, numerical aperture: 7.5 x 10⁻⁴ at 8 keV,

Zone material: Ta, 1 µm-thick,

Supporting membrane: Si_3N_4 , 2 μ m-thick.

Fabrication method: electron-beam lithography technique at NTT-AT

Si₃N₄ membrane
(2 µm-thick)

Si wafer

FZP (Ta 1 µm-thick)

Schematic Drawing of Zone Plate Structure

Diffraction Efficiency of Ta-FZP

Closed Circle: Experimental Results,

Solid Line: Calculated Efficiency assuming the Thickness of 1μ m.

Total flux of microbeam: 10^9 photons/s, Focused beam size: $0.12 \mu m$.

Test Patterns (Ta 500 nm-thick) X-ray Energy: 8 keV,, 100 x 176 pixel, 25 nm/pixel, Dwell Time: 0.1 s.

80 nm line & Space
70 nm line & Space

Test Patterns (Ta 100 nm-thick) X-ray Energy: 10 keV, 160 x 80 pixels, 25 nm/pixel, Dwell Time: 0.2 s.

Scanning Microscopic Image of Resolution Test Pattern

SEM Image of Sputtered-sliced Fresnel Zone Plate

Au Core (50 μ m in diameter), Cu/Al 50 Layers, Outermost zone width of 0.15 μ m .

Diffraction efficiency: 25% @ 1.4 Å

X-ray wavelength: 0.5 Å (24.8 keV), f ~ 220 mm, Cu/Al sputtered-sliced FZP (70 layers), Core (beam stop): Au 100 μ m in diameter, Outermost zone width: 0.09 μ m, Thickness: ~ 60 μ m. Sagittal Focus (1/4 of annular aperture)

Focused Beam Profile Measured by Edge-scan @BL20XU

X-ray wavelength: 1.4 Å, 128 x 64 pixel, 0.0625 µm/pixel, Dwell time: 0.4s/pixel.

X-ray wavelength: 1.0 Å, 256 x 70 pixel, 0.0625 μ m/pixel, Dwell time: 0.4s/pixel.

Scanning Microscopic Image of Resolution Test Pattern

X-ray wavelength: 0.124 Å (100 keV), f \sim 900 mm, Cu/Al sputtered-sliced FZP (70 layers), Core (beam stop): Au 50 μ m in diameter, Outermost zone width: 0.16 μ m, Thickness: \sim 180 μ m.

Focused Beam Profile Measured by Edge-scan @BL20XU

Experimental Setup of X-ray Microbeam/Scanning Microscopy with Total-reflection Mirror Optics (Kirkpatrick-Baez Configuration)

Kirkpatrick-Baez Optics with Aspherical (Plane Parabola) Mirrors, L_1 : 45 mm, L_2 : 45 mm, f: 75 mm.

Glancing angle: 2.8 mrad,

Mirror material: SiO₂ (Pt-coat)

Experimental Setup of Kirkpatrick-Baez Optics at BL20XU

Energy Dependence of Resolution

Pt surface, Glancing angle: 2.8 mrad.

A (possible) Way to Nonometer Probe at Hard X-ray Region

Present Status:

- ~ 50 nm with FZP,
- ~ 100 nm with SS-FZP,
- ~ 100 nm with total-reflection mirror.

Applications:

Semiconductor (quantum) devices, Micro-crystal analysis, Biology, Medicine, Material Science, etc.

FZP: manufacturing limit of EB lithography ~ 30 nm? SS-FZP: no-limt for zone width and aspect ratio, but control of zone structure may be problem. Mirror: fablication and stability may be problem.

Theoretical limit ~ 10 nm (for simple optics)

Other problems for nanometer probe

- 1. Stabilities: temperature, vibration, air turburance, etc.
- 2. Radiation damage: cryo-microscopy, phase-contrast.
- 3. Evaluation of probe size (in higher energy region).
- 4. No standard specimen for resolution test.
- 5. Sample handling.