High Energy X-ray Photoemission at Spring-8 BL29XU

<u>K. Kobayashi</u>, E. Ikenaga, and M. Yabashi , JASRI Y. Takata, T. Tokushima, and S. Shin, RIKEN K. Tamasaku, D. Miwa, and T. Ishikawa , RIKEN

Collaboration with T. Hattori , and H. Nohira, Musashi Institute of Tecnology T. Yao, H. Makino, and J. Kim, IMR, Tohoku Univ. M. Taniguchi, H. Namatame, K. Shimada, and M. Arita, HISOR T. Yamamoto, Kouchi Technical University High Resolution and High Throughput Photoemission with Hard x-rays

• Merit

Decrease of inelastic mean free path (IMFP) Large probing depth: Decrease surface sensitivity, Increase signal intensity,

High quality of spectra

• Demerit

Rapid decrease of photoionization cross sections with photon energy

Exprerimental Setup at BL29XU

 $2x10^{11}$ photons in 0.12 mm (vertical) $\times 0.7$ mm focal spot

High Resolutin and High Throughput : Au 4f and Valence Band Spectra

Surface Insensitivity: Si Valence Band

ESCA Application to Si-LSI Gate Dielectrics high-k dielectric interfaces: take off angle dependence

3d Core Hybridization Effect in Wide Gap Semiconductors GaN and GaAs

Band Gap State Induced by Mn Doping

VB spectra of Organic Compounds

Subshell Photoionization Cross Sections as functions of atomic number at 8 keV

Applications

1 . High precision $\ensuremath{\mathsf{PES}}$

high energy resolution , high angle resolution, low temperature.

UHV condition is needed-----low throughput

Solid state physics

2. High throughput PES

medium energy and angle resolution, high acceptance, non UHV. Material research, Chemical analysis

Challenges

- 1. High angle resolution **ARPES** at 5-10 keV for band dispersion measurements
- 2. Non destructive depth profiling by large acceptance angle analyzer
- 3. Scanning photoelectron microscope with focused X-ray beam
- 4. X-ray standing wave + PES

Targets

epitaxial layers, buried layers and interfaces, nano particles and clusters, organic semiconductors and metals, soft materials, liquid samples, etc.