Interaction of TTF FEL Radiation with Solids

Jacek Krzywinski Deutsches Electronren Synchrotron DESY and Polish Academy of Sciences

Outline:

Motivation
Experimental
Damage threshold and surface modification
Plasma results
Conlusions

FELIS

Free Electron Laser - Interaction with Solids

A. Andrejczuk ^{1,4}, F.Felten ⁹,U. Hahn ², S. Jacobi ⁸, M. Jurek ¹, A.Kauch³, J.Krzywinski ^{1,2},L.Juha ², J.B. Pelka ¹, H. Reniewicz⁴, E. Saldin², E.A.Schneidmiller ², E.A. W. Sobala ⁵, R. Sobierajski ^{2,6}, B. Steeg², M.V. Yurkov⁷ and TTF FEL team

¹Institute of Physics, Polish Academy of Sciences, Poland, ²HASYLAB at DESY, Germany, ³Warsaw University, Poland, ⁴University of Bialystok, Poland, ⁵Institute of Nuclear Physics, Cracow, Poland, ⁶Warsaw University of Technology, Poland, ⁷Join Institute for Nuclear Research, Russia, ⁸GKSS Research Center, Germany, ⁹Harburg-Hamburg Technical University

Motivation

Nowbody was there yet !
Strong VUV femtosecond pulses
Damage of optics for short-wave sources
Damage of samples
Nanotechnology
First plasma physics data

Experiment

Layout
Photon beam parameters
Samples

Layout of the experiment

Photon Beam Parameters

Wavelength Pulse length Pulse energy Min. Spot size Max. Intensity 80-98 nm 50 fs 1-10 uJ 10 um ~10¹⁴ W/cm²

TOF Spectrometer

Samples Metals:

Au, Al, Cu Semiconductors Si, Graphite Insulators Al₂O₃ SiO₂ YAG MgF₂ BaF₂ Organic compounds PMMA, PTFE

Damage Threshold Questions:

What are damage threshold for ultra-short VUV pulses

- Can we predict damage thresholds ?
- How does it relates to Quantum Lasers?

Phase contrast microscopy

Peak fluence $\sim 0.15 \text{ J/cm}^2$

Raman spectra show amorphous phase here

fluence $\sim 0.02 \text{ J/cm}^2$

Example of TOF mass spectrum, Ions emitted from silicon sample

 $\begin{bmatrix} n & 1 \\ 0 & 0.8 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.6 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.$

TOF mass spectrum

Threshold of Si⁺ ion emission

Estimated ion emission thresholds:

Sample/thickness damage threshold [J/ cm²]

Cu	bulk	0.5
Au	10 nm	0.05
Si	bulk	0.1
С	40 nm	0.07
YAC	bulk	0.07

Morphology of silicon surface as a function of radiation intensity C film

RMS=0.3nn RMS=0.2nm 0 10.0 µm Data type Z range Height 10.00 пм 50 um

C film on Si

fluence $\sim 0.3 \text{ J/cm}^2$

50 um

C film on Si

fluence ~ 3 J/cm^2

ionic crystals and organic compounds exhibit very sharp ablation threshold with no modification of surrounding material

YAG

• fluence ~ 0.5 J/cm^2

0

123

LIPS - Ligth Induced Periodic Structure period ~ 78 nm

Summary:

- Measured thresholds can be estimated from optical constants measured at low intensities (which is not true in the case of quantum lasers)
- Short VUV pulses are suitable for nano processing of ionic crystals and organic compounds

Plasma formation

High pass filter 200 V

Au

Measurements of ion energy distribution

Energy distributions for different charge states scale with a charge

Similar scaling has been observed for Cu and Si

Energy distributions for different charge states scale with a charge

What This Means

Ions are emited by electric field

Summary of plasma results

Energetic ions up to several keV
 Energy distributions scale with charge -> filed emision

at fluencies 10 J/cm² higher charge states (2+, 3+) dominate distribution

Conlusions:

- Damage thresholds can be predicted from optical constants measured at low intensities (which is not always true in the case of quantum lasers and insulators)
- Short VUV pulses are suitable for nano -processing of ionic crystals and organic compounds
- Plasma results show that ions energy distributions scale with charge. That suggests field emision mechanism