

Statistical Properties of a VUV FEL

Christopher Gerth

Main contributions to the understanding of the SASE statistics: Evgeni Saldin Evgeni Schneidmiller Michael Yurkov

VUV Free-Electron Laser at the TESLA Test Facility at DESY ⇒ FR-O-03 J. Roßbach: General Overview

Amplification process vs. undulator length

Exponential growth: $P(z) = P_0 * exp(z/L_g)$

Gain length: $L_g = 0.68 \text{ m}$

Photon beam	Design values	Status 9/01
Pulse energy	330 -700 μJ	50 -100 μJ
Pulse duration	1.3 ps	?

No direct measurement of the pulse duration

(Power) Gain length L_a :

$$P(z) \approx P_0 * exp(z/L_g)$$

$$\mathsf{L}_{\mathsf{g}} \approx \frac{\lambda_{\mathsf{u}}}{4\pi \cdot \rho}$$

 $\rho \approx 3 \cdot 10^{-3}$ FEL Parameter Information about electron beam parameters, e.g. I

with
$$\lambda_u$$
 = 27.3 mm
L_g = 68 cm

Coherence length I_c :

$$I_c \approx \tau_c \cdot C$$

with
$$\tau_c = 1/\omega\rho$$
 and $c = \lambda \cdot \omega/2\pi$

$$l_{c} \approx \frac{\lambda \cdot \omega}{\omega \rho \cdot 2\pi}$$

$$I_c \approx \frac{2L_g \cdot \lambda}{\lambda_u} = 5 \,\mu m$$

If the pulse is longer than I_c: Several longitudinal modes

Coherence time τ_{c} :

$$au_{c} \approx \frac{I_{c}}{c} \approx \frac{T}{\omega \rho T} \approx \frac{T}{M} \approx 20 \, \text{fs}$$

Pulse duration: T \approx M $\cdot \tau_c$ with M: No. of Modes

Linear regime

Probability distribution of the pulse energy

In the linear regime:

Pulse energy of chaotic polarized light fluctuates according to Gamma-distribution

$$\mathbf{p(E)} = \frac{\mathbf{M}^{M}}{\Gamma(\mathbf{M})} \left(\frac{\mathbf{E}}{\langle \mathbf{E} \rangle}\right)^{M-1} \frac{1}{\langle \mathbf{E} \rangle} \exp\left(-\mathbf{M}\frac{\mathbf{E}}{\langle \mathbf{E} \rangle}\right)$$

Energy Fluctuations: $\sigma = 61\%$ No. of Modes: M = $1/\sigma^2 = 2.6$

Pulse duration T T \cong M * 20 fs \cong 50 fs

Energy fluctuations behind a narrow-band monochromator

Pulse energy Wire + Micro Channel Plate Detector

Data selection: Charge fluctuations < 1% (rms) Orbit deviation < 50 μm The determination of absolute pulse energies in the VUV is a challenging task.

- Large dynamic range: 10⁷ (The MCP has been calibrated for different voltage settings U)
- Spont. Emission: gain = 1
 E = gain · Q · f(λ)
 (f can be calculated precisely)
- Corroborated by independent detectors

Entrance slit

🛻 5 - 195 µm

Spectral distribution

Measurement of the Spectral Distribution

1 m Normal Incidence Monochromator

Fluorescent screen (P46) in the exit plane

Intensified CCD camera ⇒ MCP as a fast shutter (5 ns) ⇒ single pulse spectra

Spectral distribution

Determination of the pulse duration

Spike: $T \cong 2\pi^{1/2} (\Delta \omega)_{spike}$ = 37 fs

Average: $2\pi^{1/2}(\Delta\omega)_{\text{FWHM}} = 16 \text{ fs}$ T \cong M * $2\pi^{1/2}/(\Delta\omega)_{\text{FWHM}} \cong 41 \text{ fs}$

Spectral distribution

Fluctuations of integral intensity in the spectra

Estimation of the radiation pulse length τ_{rad} :

 $\begin{array}{l} \text{Modes: } \textbf{M} = \textbf{1}/\sigma^2 = \textbf{1.6} \\ \tau_{\text{rad}} \cong \textbf{2}\textbf{M}\pi^{1/2}/\Delta\omega \cong \textbf{40 fs} \end{array}$

Spectral distribution Fluctuations at saturation (spectrally resolved)

Energy fluctuations for a narrow bandwidth in the centre of the spectral distribution

 Few modes M ⇒ fluctuations decrease
 Many modes M ⇒ 100 % fluctuations! Design value: M ≈ 20

testatet ~~~

BC1 on

SFPD

Pulse duration tailoring with Bunch Compressors

Summary

• Statistical properties of the SASE FEL are helpful for the determination of electron and photon beam properties.

• FEL parameters

Photon beam properties	Design values	Status
Pulse energy at saturation	330 -700 μJ	50 -100 μJ
Pulse duration (FWHM)	1.3 ps	30 -100 fs
Peak power	0.23-0.5 GW	1 GW
Energy fluctuations behind		
narrow-band mono at saturation	100%	40%

• Energy fluctuations behind a narrow-band monochromator decrease for short bunches.

⇒ Intensity of 2nd harmonic is about 1.0 - 0.1 % of the fundamental

Second Order Spectral Correlation

⇒ Method for the determination of the radiation pulse length T

testatet ~~~

SEPP.

Applications Cluster Experiment

Hubertus Wabnitz, Thomas Möller et al.

AA-

- emission of highly charged ions from clusters
- ions have high kinetic energies

Applications Dependence on Cluster Size

Xenon clusters, 50 atoms 10¹³ Watt/cm²

5*10¹¹ Watt/cm²

Applications Radiation Stability

FELIS Experiment:

(R. Sobierajski, J. Krzywinski, et al.)

wavelength: 98 nm pulse length: 100 fs pulse energy : 40 μJ

damage threshold: 0.06 J/cm²

Sample:

carbon mirror with 39 nm thickness

diffraction at intensity monitor (gold wire)

mm

Summary

- Free-Electron Laser at the TTF produces Gigawatt, femtosecond, laser-like radiation in the VUV
- Multiple Ionisation of Clusters
- Determination of Damage Thresholds

SFPD

Experimental Setup The Free-Electron Laser at TTF: Phase I

Idea: high gain ⇔ single pass ⇔ n<u>o mirrors !</u>

Toroid reading

Second peak ??

 $\Delta\omega/\omega$ (%)

Regenerative FEL Amplifier (RAFEL)

AA-

Courtesy of E. Schneidmiller

Frequency-quadrupled ND:YLF laser 1047 nm \Rightarrow 262 nm

Pulse train 8	800 µs
Pulse energy	50 µJ
Pulse duration (rms)	7 ps
Energy variation:	
pulse to pulse	< 5%
Variable shape	

Time structure of electron bunches

Bunch Compressor Scheme

- Long undulator 3 modules of 4.5 m
- fixed gap
- Integrated focusing
- Corrector coils (steerers)

Probability Distribution behind a narrow-band monochromator

At saturation:

- Probability distribution changes within the spectral distribution
- Asymmetric shape
- Many modes ⇒ 100 % fluctuations!

Cathode Laser			LINAC
Wavelength	262 nm	Energy	

Wavelength Pulse energy	262 nm ≈ 50 µJ	Energy No. of electrons	245 MeV ≈ 10 ¹⁰	Wavelength Pulse energy	90 nm ≈ 90 µJ
No. of Photons Pulse duration	$\approx 5 \cdot 10^{13}$ 10 ps	Pulse duration	10 ps	No. of Photons Pulse duration	≈ 5 · 10 ¹³ 50 fs
Energy variation pulse to pulse	< 5%	Energy variation pulse to pulse	: < 0 .1%	Energy variation	n: ≈25%

