10 Femto-seconds Kilo-ampere Electron Beam Generation

X.J. Wang and X.Y. Chang

National Synchrotron Light Source, Brookhaven National Laboratory

Upton, NY 11973, USA

•Introduction: issues in fs beam generations.

•6-D beam quality optimization in photoinjector -Longitudinal Emittance Compensation.

•Three steps electron bunch compression

1. RF gun – quarter wave buncher and Energy chirp (10 ps).

2. Drift space – velocity bunching (ps)

3. Off crest acceleration – femto-second velocity bunching.

•Initial experimental results: old and new

A.H. Zewail

BROOKHAVEN NATIONAL LABORATORY

Temporal and Spatial Scales

from LCLS scientific cases

BROOKHAVEN NATIONAL LABORATORY

$$x''+k (s)x - \frac{2r_e N/\ell}{a^2 \gamma^3}x = 0$$
$$z' = \frac{\delta}{\gamma^2}$$
$$\delta' = \frac{3r_0 N}{\gamma^3 \beta^2 \ell_b^3} f(a,b)z$$

Energy is the most effective reduce space charge effect, asymmetry in transverse and longitudinal space charge effect must be kept in mind all time.

Transverse Emittance and Energy Spread Effect on the Short Bunch Production

To generate and preserve the femto-second electron bunch, trnasverse emittance and energy spread are important:

Transverse Emittance

• Are all emittance uncorrelated?

$$\mathcal{E} = \sqrt{\mathcal{E}_{ther} + \mathcal{E}_{rf} + \mathcal{E}_{sc}}$$

K-J.'s theory:

$$\varepsilon_{nx}^{sc} = \frac{\pi}{4} \frac{1}{\alpha k} \frac{1}{\sin \phi_0} \frac{I}{I_A} \mu_x(A)$$

Emittnace growth (Rieser):

$$\frac{\varepsilon_{nf}}{\varepsilon_{ni}} = \left[1 + \frac{Nr_c \widetilde{x}}{15\sqrt{5}\gamma_0 \varepsilon_{ni}^2} \frac{U}{w_0}\right]^{1/2}$$

BROOKHAVEN NATIONAL LABORATORY

The Advanced FEL Photoinjector Operates at 20 MV/m Gradient and 200 mA Average Current

- 1300 MHz
- E_b = 15-20 MeV
- I_{macro} = 100-400 mA
- Q = 1-4 nC
- $\varepsilon_{\rm rms}$ = 1.6 mm-mrad
- $\Delta \gamma / \gamma = 0.2\%$
- Injection $\phi = 30^{\circ}$
- Solenoid = 300A
- Bucking Sol. = 310A

2002, ANL, Chicago

Typical operating parameters

** determined in the RF gun with a picosecond Nd:YAG laser **

(1) Laser injection phase in RF gun: 30°

⇒ for a maximum energy with low emittance

(2) Linac RF phase: 47°

⇒ for a minimum energy spread

(3) Solenoid magnetic field: 1.57kG

⇒ For an optimal emittance compensation at 0.6nC, 14MeV

FESTA

📀 Sumitomo Heavy Industries, Ltd.

Emittance measurements for gaussian and square laser pulse shapes

Emittance Optimization at the BNL ATF

ATF Automatic Emittance Scan Procedure						
Case: Measure at BPM5, scanning HQ6 SETUPS						
Operator comment: emittance for 0.5nc						
Measurement type:	📈 Hori	zontal				
Vertical		ical	HORIZONTAL EMITTANCE			
Dipole name: HD1			Horizontal calculations:			
Dipole current: 25.000			Geometric emittance = 0.023995 -999.999023			
Dipole coefficient:	1.80000		Normalized emittance =		2.117163	-999 999023
computed beam ene	ergy = 45.000		niormaizea emi		21111100	000.000020
Ouedrunele te he cesere	HQ2		Sigma (1,1) =	0.285062		
Quadrupole to be scanne	0.02250		Sigma (1,2) =	0.168687		
Quadrupole length:	0.02230		Sigma (2,2) =	0.101841		
Starting current:	-4,500	-				
Ending current:	ling current: -7.000		VERTICAL EMITTANCE			
No. of setpoints:	of setpoints: 10		Vertical calculat	ions:		
No. of repeats each setpoint: 2			-			000 000000
Saraan	en: BPM5		Geometric emit	ance =	0.008598	-999.999023
Drift distance:	9 17000 m		Normalized emi	ttance =	0.758661	-999.999023
Pixel celibration (X):	10 200		Sigma (1,1) =	0.219295		
Pixel calibration (Y): 11.700			Sigma (1,2) =	0.172177		
			Sigma (2,2) =	0.135521		
Start / Stop analysis:						
Server message: Waiting for operator request Horizontal spot size*2 vs. Quad current + + + + + + + + + + + + + + + + + + +						
	+			+		+
+	+		0		+ + +	
💐 1 - BNLATC 🔀 ATF INJI	ECT PRE_POST	RF_SYSTE	GUN PHASE	📴 GUN ATTE	🔛 LINAC PHA	🔛 LINAC ATT 🛛
📴 MPS LT1H 📖 🔀 MPS HQ	1 • 🔀 MPS LS1 •	🛃 emittance_1	. 📝 emittance_1	ATF FRON	T 🏙 MPS HT1H	ATF Auto

Thermal Emittance

Electrons are emitted with a kinetic energy E_k

•
$$\varepsilon_{th} = \frac{r}{2} \sqrt{\frac{E_k}{m_e c^2}}$$
 laser spot assumed uniform with radius r

$$E_k = h \nu - \Delta + \alpha \sqrt{\beta_{RF} E_{RF} \sin \theta_{RF}}$$

Example of measurement for Cu-cathode

(Courtesy of W. Graves)

 $\Delta = \Phi$, or $E_G + E_A$

=0.43 eV Ph. Piot, DESY FEL 2002. ANL, Chicago Nonlinear fit gives β_{rf} =3.1+/-0.5, Φ_{cu} =4.73+/-0.04 eV, and E_{L} =0.40 eV BROOKHAVEN NATIONAL LABORATORY

Linear fit gives $E_k=0.43 \text{ eV}$

ICFA/BD Sardinia July 2002

Angle-Resolved Photoemission Spectroscopy

FEL 2002, ANL, Chicago

Electron Analyzer

Z.X. Shen of SSRL

Femto-seconds Electron Beam Production

- Femto-seconds pulse train using IFEL and SASE FEL.
- Single pulse femto-second pulse production:
 - A) Direction Generation -Photoinjector, DC Pulse gun plasma accelerators.
 - B) Magnetic Compressor chicane and undulator.

500 kV SCSS electron Gun

DC gun (500 keV, 10 MV/m) to RF gun (5 MeV, 100 MV/m) lead to pulse length from **NS to pS**, peak current from several Ampere to ≈100 A. Does present technology allows us to produce kilo-ampere, femto-second electron beam directly?

A Plasma Electron-gun

Lanex film $a_0 = 3.0$ τ = 400 fs 100 MeV/mm 10¹⁰ e⁻/shot

D. Umstadter et al., Science **27**3, 472 (1996). S.-Y. Chen et al., Phys. of Plasmas, 7, 403 (2000).

 $I = 10^{19} \text{ W/cm}^2$ $n = 10^{19} \text{ cm}^{-3}$

 $\Delta \Theta = 1^{\circ}$

LIPA injector for laser based accelerators

- LIPA -- Laser Ionization and Ponderomotive Acceleration.
- Tightly bound electrons ionize at high laser intensities and acquire large ponderomotive energy.
- LIPA electrons are synchronized for precise injection in laser driven accelerators.
- Energy dependent ejection angles of LIPA electrons allow energy selection.
- LIPA electron pulse is shorter than the ionizing laser
- Experiment demonstrated >10⁷ electrons at 500 keV; ANL, thicage

Traveling wave linac as a Buncher

BROOKHAVEN NATIONAL LABORATORY

Photocathode RF Gun Injector System

- 1. RF Gun.
- 2. Driving Laser system.
- 3. Solenoid Magnet.
- 4. Beam diagnostics.
- 5. RF gun Operating principle.

Longitudinal Emittance Compensation

Longitudinal Emittance

 $\varepsilon_{\phi} \approx \frac{1}{2} \sigma_{\phi}^{3} \cos(\phi_{0})$

Bunch charge [pC]

ATF Accelerator System

10 fs kilo-Ampere Electron beam generation

10 fs Kilo-Ampere Electron Beam Phase Space distribution

20 pC

200 pC

Electron Beam Properties as function of the Charge

R3122

54

Experimental observation of high-brightness microbunching in a photocathode rf electron gun

X. J. Wang, X. Qiu, and I. Ben-Zvi

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (Received 13 February 1996)

We report the measurement of very short, high-brightness bunches of electrons produced in a photocathode rf gun with no magnetic compression. The electron beam bunch length and the charge distribution along the bunch were measured by passing the energy chirped the electron beam through a momentum selection slit while varying the phase of the rf linac. The bunch compression as a function of rf gun phase and electric field at the cathode were investigated. The shortest measured bunch is 370 ± 100 fs (at 95% of the charge) with 2.5×10^8 electrons (170 A peak current); the normalized rms emittance of this beam was measured to be 0.5π mm mrad and the energy spread is 0.15%. [S1063-651X(96)51110-4]

X. J. WANG, X. QIU, AND I. BEN-ZVI

100 90 Photo-electron bunch length (FWHM,ps) ~ 01 29 80 36° 70 22 Peak Current (A) 60 42° 50 90**MV/m** 40 4Q 8 4 110MV/m 30 20 2 10 100MV/m 15 ol 0 25 5 10 15 20 20 **3**0 50 60 70 40 Logitudinal Position (ps) rf Gun Phase (degrees)

PHOTO-ELECTRON BEAM LONGITUDINAL PHASE SPACE TOMOGRAPHY STUDIES AT THE ATF

DUV-FEL Facility

Bunch length versus phase of L1

• phase of linac section L1 is varied + L2 kept on-crest

ICFA Sardinia July 2002

W. Graves et al FEL 2002, ANL, Chicago

Summary

- We have shown that, by taking advantage of the longitudinal emittance compensation, it is possible to produce 10 fs Kilo-Ampere electron beam with emittance less than 1 mm-mrad.
- Preliminary experimental results are very promising, 200 MeV linac at the Brookhaven DUV-FEL and associated diagnostic tool will be a perfect fit with additional solenoid magnet.

