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ELETTRA, Sincrotrone Trieste

Europe’s first 
“third generation” 
VUV/Soft Xray
synchrotron light source

Operational since 1993

Energy: 0.9 ÷ 2.4 GeV
Circumference: 259 m
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ELETTRA, Sincrotrone Trieste

•20 beamlines (used for 
investigations in materials 
science, life sciences, 
physics, chemistry and 
geology)           

• Light range from eV to 
tens of keV 

• Total operating time 
about 5000 h/year
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ELETTRA FEL Layout

FEL at Elettra: operational since 2000
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Activity milestones

Oct. 1998:   FEL parameters definition
Aug. 1999:   Start of installation
Feb. 2000: Completion of hardware installation
Feb. 2000: First lasing at 350 nm 
May 2000: Lasing at 220 nm
Feb. 2001: Lasing at 190 nm
July 2001: 330 mW extracted power at 250 nm and 0.9 GeV
Nov. 2001: First operation at 1.3 GeV
Mar. 2002: Surface Magnetometry experiment 

[Herve Cruguel, WS-O-08]
June 2002: e-beam energy up to 1.5 GeV
Aug. 2002: 520 mW extracted power at 1.3 GeV
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EC Project - EUFELE

Partially funded now under EC FP5 contract (No. HPRI-CT-2001-50025):

“Development of the European Free-Electron Laser at 
ELETTRA as a VUV Research Facility” 

Start date: 01/12/01 End date: 30/11/04

Partners
Sincrotrone Trieste Italy 

(coordinator) 
CEA/DSM France
CLRC-Daresbury Lab. England
CNRS-LURE France
ENEA-Frascati Italy
Fraunhofer Institute, Jena Germany
Laser Zentrum Hannover Germany

Main Goals
Develop suitable mirrors in order to 
reach VUV wavelengths

Improve FEL beam stability

Realize a VUV compatible beamline
and diagnostics 

Develop experimental equipment and 
perform  initial set of experiments
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Higher e-beam energy

The high gain (up to 20%) and the robustness of oxide 
mirrors (400 mAh of dose without degradation effects) 

allow to increase the operation energy above the 0.9 
GeV injection energy

Motivations:

Enhancement of the extracted power

Improvement of the  beam stability

Compatibility with other synchrotron radiation users
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Electron beam characterization 
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Output power

• Renieri Limit
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Output power

Power measurements @ 1.3 GeV and 900 MeV 
with mirrors at 250 nm (Γ ≅ 9 %, T ≅ 5%)

max power = 520 mW at 23.6 mA
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Peak Brilliance

520 mW at 250 nm => 3 1024 photons/s/0.1%bw/mm2/mrad2
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Output power

Power measurements @ 1.5 GeV and 900 MeV 
with mirrors at 208 nm (Γ ≅ 7 %, T ≅ 1.2 %)

max power = 120 mW at 19 mA
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Laser-electron beam detuning

Linewidth and Pulse length (@1.5 GeV and 208 nm)
vs. optical cavity length:
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Linewidth and Pulse length

Narrower spectrum and shorter pulse are observed when energy increases:
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Electron beam behaviour 

Measurements of the FEL and the e-beam with the Streak Camera:
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Electron beam heating   

Measurements of the FEL induced bunch lengthening
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Towards Compatibility

The 4 bunch filling of Elettra is of interest for a number of 
experiments in various fields (chemistry, physics, biology).

Energy lower than the usual one (2÷2.4 GeV), allows the beamlines to 
extend the useful photon energy range down to few eV 

The short light pulses (less than 100 ps) with a repetition rate of 4.6 
MHz and a good temporal stability (jitter less than few picoseconds) 
are suitable for many experiments like 
• Time resolved fluorescence
• Coincidence spectroscopy with ions and electrons
• Time resolved magnetometry with photoelectrons
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Gas Phase Experiment         

During the FEL shifts the Gas phase beamline successfully performed
doubly excited helium system exploration.

Measurements of the (2p3d) 1Po and of the He+ 2p lifetime
by detecting the fluorescent photons as a functions of time

[J.G. Lambourne, Elettra Highlights 2002 - to be published]
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Conclusions

Operation of the FEL at ELETTRA at different e-beam 
energies (900 MeV ÷ 1.5 GeV) has been successfully 
demonstrated

In general, better beam stability is obtained at higher 
energies.

Laser performance was improved at energies above 1 GeV 
in terms of power, spectral width and pulse duration.

High extracted power operation reveals to be almost 
transparent for users applications.  
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