What do these people need?

Coherence...

RWTH

Study of the Transverse Coherence at the TTF Free Electron Laser

Rasmus Ischebeck

Study of the Transverse Coherence at the TTF Free Electron Laser

- Experimental Setup
 - TTF Linear Accelerator and SASE FEL
 - Photon Diagnostics
- Measurements of the transverse coherence
- Image Processing
- Analysis
- Simulations
- Outlook

TTF FEL Linear Accelerator

- Gun
- Superconducting RF Cavities
- Bunch Compressor
- Undulator
- SASE

TTF FEL Properties of the Electron Bunch

- Energy: 230 MeV per particle
- Bunch charge: 3 nC (Radiating bunch charge: 0.2 nC)
- Beam current > 1 kA
- Up to 70 bunches per second

Measurement by interferometry of coherent transition radiation

Experimental Setup Properties of the FEL Light

- Wavelength: 80 ... 120 nm, depending on the electron energy
- Pulse energy: typically up to 10 µJ per pulse
- Peak power: 1 GW
- FEL starts from noise
- \Rightarrow No input needed
- Single pass saturation
- ⇒ No mirrors needed
- Longitudinal and Transverse Coherence

Experimental Setup Coherence Measurements

Experimental Setup Coherence Measurements

- Diagnostics inside the accelerator tunnel
- Slits, crystal are in the UHV of the linear accelerator
- Distances fixed by setup
- Near field diffraction
- compared to approx. 3 mm size of the radiation spot: slit length 2 mm

Experimental Setup Near Field Effects

• Criterion for far field diffraction:

$$\frac{\lambda L}{d^2} >> 1$$

- d: distance between slits, λ : wavelength, L: distance slits—screen

• Here: L = 3.1m, d = 1mm,
$$\lambda = 100$$
nm $\Rightarrow \frac{\lambda L}{d^2} = 0.3$

- Near field effects \Rightarrow reduced modulation
- additional modifications to the far field formula:
 - finite width and length of slits

Simulation of Near Field Diffraction

z Position: 0.00 m

Vertical slits, 1 mm separation. Average of 99 images with 3 bunches each

Vertical slits, 2 mm separation. Average of 99 images with 3 bunches each

Measurements Circular Aperture: Ø 3mm

Measurements Circular Aperture: Ø 5mm

Measurements Circular Apertures

• Number of rings that a circular aperture creates in near field approximation:

$$N_f = \frac{r^2}{\lambda} \left(\frac{1}{D} + \frac{1}{L}\right)$$

r: aperture radius, λ : wavelength, D: distance source—aperture, L: distance aperture—screen

Here:

Aperture	predicted	observed
3 mm	9.2	9
5 mm	25.5	23

Measurements Circular Aperture + Wire

A wire in the beam path also creates diffraction

Measurements Crossed Slits

Image Processing Deconvolution of the Camera Resolution

 Diffraction effects and lens errors affect the observed image: the real distribution Ψ is convoluted with the Point Spread Function P

$$\Phi(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(x-u,y-v) \cdot \Psi(u,v) du dv$$

• For discrete values:

$$\Phi_{i,k} = \sum_{m,n} P_{i-m,k-n} \cdot \Psi_{m,n}$$

Image Processing Deconvolution of the Camera Resolution

- ⇒ Reduced contrast
 - ⇒ apparently reduced FEL coherence
- If P is known, the system of equations can in principle be solved
- But: as a result of measurement errors (noise) in the measured image, negative values for the real intensities will appear!
- The images can be reconstructed using the Lucy-Richardson algorithm
 - Maximize the likelihood of the measurement, with given boundary conditions
 - Widely used in image processing

Image Processing Deconvolution of the Camera Resolution

Image Processing Correction for Non-Linear Response

- Light emitted by the Ce:YAG crystal is not proportional to the incident energy
- Correction applied with the help of a calibrated multi-channel plate

Analysis Measurement, 1mm double slit

Rasmus Ischebeck: Study of the Transverse Coherence at the TTF FEL

Analysis of Experimental Data Projection of the Selected Area

Rasmus Ischebeck: Study of the Transverse Coherence at the TTF FEL

Analysis of Experimental Data Modulation Depth

Rasmus Ischebeck: Study of the Transverse Coherence at the TTF FEL

Analysis of Experimental Data Double Slit — 0.5 mm separation

Modulation

Analysis of Experimental Data Double Slit — 1 mm separation

Modulation

Analysis of Experimental Data Double Slit — 2 mm separation

Modulation

Analysis of Experimental Data Double Slit — 3 mm separation

Modulation

Analysis of Experimental Data Slit Separation → Modulation

Simulations **GLAD**

- "General Laser Analysis and Design"
- Calculates the diffraction in the near field
- Propagates arbitrarily shaped wave packets, defined by slowly varying amplitude
- Various optical elements
- Import and export of the electric field
- Limitations
 - Assigned memory not sufficient to propagate 3-dimensional beam (defined on 1024x1024x512 points)

Simulations Plane Wave Input

Simulations Gaussian Beam Input

Coherence Measurements Comparison with other Methods

• For any beam, we have at the waist:

$$\sigma_r \sigma_\theta \geq \lambda / 4\pi$$

where σ_r is the beam diameter, σ_{θ} the angular divergence

For a perfectly coherent gaussian beam, this becomes an equality:

$$\sigma_r \sigma_\theta = \lambda / 4\pi$$

•

Coherence Measurements Comparison with other Methods

Outlook Development along Undulator

- Beyond the saturation of the FEL: growth of the number of transverse modes
- ⇒ decrease of transverse coherence!
 (See FEL2002: Saldin, Schneidmiller, Yurkov)
- TTF FEL can be virtually shortened by kicking the beam off the undulator axis
 - measure coherence at different effective undulator lengths

Coherence Measurements Conclusion

- Obtained double slit diffraction patterns of a SASE FEL at 100 nm
 - Setup in ultra high vacuum
 - Fluorescent crystal read out with CCD camera
- Double slit create diffraction images similar to near field theory:
 - Modulation depth decreases outwards
- Determined Modulation
 - at various slit separations
 - with different electron bunch properties

Contributions by

J. Feldhaus, Ch. Gerth, E. Saldin, P. Schmüser, E. Schneidmiller,
 B. Steeg, K. Tiedtke, M. Tonutti, R. Treusch, M. Yurkov

Thank You to the TTF Team

• V. Ayvazyan, N. Baboi, I. Bohnet, R. Brinkmann, M. Castellano, P. Castro, L. Catani, S. Choroba, A. Cianchi, M. Dohlus, H.T. Edwards, B. Faatz, A.A. Fateev, J. Feldhaus, K. Flöttmann, A. Gamp, T. Garvey, H. Genz, V. Gretchko, B. Grigoryan, U. Hahn, C. Hessler, K. Honkavaara, M. Hüning, M. Jablonka, T. Kamps, M. Körfer, M. Krassilnikov, J. Krzywinski, P. Kulinski, C. Lackas, M. Liepe, A. Liero, T. Limberg, H. Loos, M. Luong, C. Magne, J. Menzel, P. Michelato, M. Minty, U.-C. Müller, D. Nölle, A. Novokhatski, C. Pagani, F. Peters, J. Petrowicz, J. Pflüger, P. Piot, L. Plucinski, K. Rehlich, I. Reyzl, A. Richter, J. Rossbach, W. Sandner, H. Schlarb, G. Schmidt, J.R. Schneider, H.–J. Schreiber, S. Schreiber, D. Sertore, S. Setzer, S. Simrock, R. Sobierajski, B. Sonntag, B. Steeg, F. Stephan, N. Sturm, K.P. Sytchev, D. Trines, D. Türke, V. Verzilov, R. Wanzenberg, T. Weiland, H. Weise, M. Wendt, T. Wilhein, I. Will, K. Wittenburg, S. Wolff, K. Zapfe

Coherence Measurements Comparison with other Methods

• The coherence can be expressed in terms of the correlation function

$$\gamma_1(\vec{r}_\perp, \vec{r}'_\perp, z, t) = \frac{\langle \tilde{E}(\vec{r}_\perp, z, t) \tilde{E}(\vec{r}'_\perp, z, t) \rangle}{\left[\langle |\tilde{E}(\vec{r}_\perp, z, t)|^2 \rangle \langle |\tilde{E}(\vec{r}'_\perp, z, t)|^2 \rangle \right]^{1/2}}$$

- This is related to the normalized angular spectrum $h(\vec{k}_{\perp},z)$:

$$h(\vec{k}_{\perp},z) = \frac{1}{(2\pi)^2} \int \gamma_1^{(eff)}(\vec{\rho},z) e^{-i\vec{k}_{\perp}\cdot\vec{\rho}} \mathrm{d}\vec{\rho}$$

The latter is easy to measure: it is given by the intensity distribution in the far field.

Coherence Measurements Comparison with other Methods

- Statistical fluctuations of the radiation power also depend on the coherence
- 80 % transverse coherence

update: 14. March 2002, webmaster Summary of the parameters of the VUV and Soft X-Ray FEL (TTF) and the X-ray FEL (TESLA)

	TTF-FEL Phase I (design)	TTF-FEL Phase I (actual)	TTF-FEL Phase II	X-ray FEL (1.0 nm)	X-ray FEL (0.1 nm)	
Electron Beam						
Energy (GeV):	0.25	0.24	1.0	23	25	
Normalized emittance (π mm mrad):	4	6	2	1.6	1.6	
Emittance (π nm rad):	8.0	12	1.0	0.04	0.03	
Bunch charge (nC):	1	2.8	1	1	1	
RMS bunch length (µm):	240	30*	48	25	25	
RMS bunch width (µm):	68	110	67	23	38	
Bunches per second:	18000	up to 70	72000	57500	57500	
Photon beam						
Energy (eV):	12	12	192.8	1231	12311	
Wavelength (nm):	100	100	6.4	1	0.1	
Peak power (GW):	0.5	1.0	2.3	185	37	
Photons per bunch:	2.1 E14	2-5 E13	3.9 E13	1 E13	1.8 E12	
Average brilliance**	1.0 E21	1.0 E17	1.0 E23	5.2 E24	4.9 E25	
Peak brilliance**	4.3 E28	2-4 E28	2.2 E30	9.3 E32	8.7 E33	
FWHM spectral bandwidth (%):	0.64	1.0	0.46	0.4	0.08	

* "lasing" part of the bunch **(photons/ sec/ mm²/ mrad²/ 0.1%)

Simulations **Definitions**

Simulations **Definitions**

