

Mirror Issues for FELs

1

David Garzella

CEA-DRECAM/SPAM and LURE (France)

Needs for a Laser source?

Coherence Tunability High Power Stability

Optical Resonators

- Geometry
- Mirrors
- Gain vs. Losses

Wavelength Range and Tunability

Near-Mid IRUV-VUV

Thermal Load and Stability
 Synchrotron Radiation
 High Power FELs

CX-Ray Optics for Resonator-Free Devices

Conclusions

Optical Resonators : Geometry

$$w_{0} = \frac{\lambda}{2\pi} \sqrt{L_{c} (2R_{c} - L_{c})}$$
$$Z = \frac{\pi w_{0}^{2}}{\lambda}$$

Gauss-Hermite Modes TEM_{mn} Higher order modes are larger

Optical Resonators: Mirrors

IR -> VUV

ñ = n + ik = 1.3 ... 2.0

- Substrate +Coated Layers
- > optical materials:
 - oxides, fluorides, metals
- > optical losses:
 - absorption, scattering

transmission, reflection optics

SUBSTRATE	

Gain, Mirror Losses and Laser power

•Too large transmission reduces intracavity power, thus killing the amplification process

•The amplification and the losses determine the optimal value for the transmission.

Wavelength Range and tunability

The IR range

-In the near IR range, gain values overpass the 50-100 %

-Metal Coated Mirrors (Au) or oxyde multilayers guarantee very high reflectivities

The second equation of the second equation

Is Output Coupling a crucial factor for increase the extracted Power ?

Free Space-Waveguide Coupling

Optical Range : Free Space modes small compared to the Finite Aperture

Long Wavelengths Range : Diffraction Losses increase

Hybrid waveguides resonators : partial waveguiding of the optical mode high efficient TEM₀₀-TE₁₀ coupling

Toroidal Mirror are used

High order modes are almost suppressed

A. Doria, G. Gallerano, Opt. Com 85 (1991) 500-507

K. Berryman, T. Smith, NIM A 318 (1992) 147-151

Output Coupling and Versatility

Output coupling system in JAERI FEL For the mid-IR range.

Optical extraction efficiency doubles with respect to the <u>hole coupling</u>

R. Nagai et al., NIM A 475 (1992) 147-151

Mirrors Carrousel on the FELIX facility Wavelength Range : 25-300 μm

FIOOOC

UV-VUV Optics I

- 1983 : ACO oscillates @ 635 nm with G<0.5 %
 1987 : ACO @ 463 nm with G~0.2 %
 1988 : VEPP3 OK-4 @ 240-690 nm with G=4-10 %
- >1992: Super ACO at high E=800 MeV @ 350 nm G ~2 % P~100's of mW
- >1997: UVSOR Helical OK @ <239 nm
- >1998: Duke OK-4 and NIJI-IV @ 212-226 nm 2 % < G < 13%
- >1999: Duke OK-4 @193.7-209
- >2001: ELETTRA @ 190 nm G ~20 %

≻2001: UVSOR user experiment @ 570nm but P~1.2 W!
≻2002: ELETTRA E= 1.5 GeV @ 207 nm P~0.2 W.

UV-VUV Optics II

✓Coatings

- Reduced number of transparent materials
- Scattering and absorption losses increased
- Contamination, environment and lifetime problems
- ✓Components
- Coating substrates with strong different thermal expansion coefficients
- -Transparency (Output Coupling)
- ✓General
- No commercial metrology tools available, must be developed too.

UV-VUV Mirrors : Available materials

- Available technologies :
- Ultra low loss PVD
- Advanced Plasma Source (PIAD)
- Ion Assisted Deposition (IAD)
- Ion Beam Sputtering (IBS)

	248 nm	193 nm	157 nm
Fused silica	+	+	
Sapphire	+		
CaF ₂	+	+	+
MgF ₂	+	+	+
		•	

UV-VUV Optics II: State of the Art

HR @ 193 nm AI_2O_3/SiO_2 deposited by IBS

lasing at 189.95 nm – 200.3 nm

10 mW @ 26 mA

By courtesy of A. Gatto and S. Gunster

FEIDOOO

UV Tunability

ELETTRA

@G.Swift, V. Litvinenko, Tu-P-18

Towards shorter Wavelengths I

IBS Al₂0₃/SiO₂ multilayer

Optical indices based Calculations

Towards shorter Wavelengths II

Sc-Si multilayer

Uspenkij et al. NIM A 448 (2000) 147-151

Mo-Si multilayer

Mirrors Degradation

Surface Degradation

 Residual Hydrocarbon Gases
 VUV Harmonics from the undulator

 Volume degradation

 Non stoichiometry
 X-rays activation

K. Yamada et al, NIM A (1995)D. Garzella et al, NIM A (1996)

H. Hama et al, NIM A (1997)

A. Gatto et al, NIM A 484 (2002)

Synchrotron Radiation

Planar Optical Klystron

Variable Polarization Optical Klystron

Calculations performed with the SRW code (by P. Elleaume and O. Chobar)

Mirrors Degradation

Synchrotron Radiation spectral content

Investigated Areas :5 x 5 mm 20 x 20 mm

Total energy deposited on the Surface

Has Irradiated Dose (mAh) a meaning anymore?

High damage Threshold

LIDT scales as $1/\lambda$ and decrease with pulse length

Wavelength (nm)	Coating	Pulse width	LIDT (J/cm²)	Scaled 248 nm LIDT (J/cm ²)
355	Fluoride	3 ns	12	0.2
355	Oxide	3 ns	12	0.2
248	Oxide	30 ns	16	0.1
248	Oxide	20 ns	2.5	0.02
193	Oxide	30 ns	0.5	0.003
193	Fluoride	30 ns	6.7	0.04
800	Oxide	100 fs	0.4	0.1

By courtesy of M. Shinn

Thermal Load and Stability

Synchrotron Power

Synchrotron Power

$$y(x) = \frac{x^2}{2R_c} + h_{Th} e^{-\frac{x^2}{2\sigma_{Th}^2}}$$

$$\frac{1}{R_c} - \frac{h_{Th}}{\sigma_{Th}^2} e^{-\frac{x_o^2}{2\sigma_{Th}^2}} \left(1 - \frac{x_o^2}{\sigma_{Th}^2}\right) = \frac{1}{R'_c}$$

20

High Power FEL Operation

Non negligible amount of FEL power is absorbed (10's of W)

Transient and steady-state mode distortion has been observed

High Power FEL Operation

-Thermal Load is reduced by shortening the Rayleigh Length

-Concentric Resonator configuration (more unstable)?

☞M. D. Shinn Tu-O-06

X-Ray Optics I : Reflective Optics

Spatial Coherence, High Brilliance

Imaging Interferometry Non linear Optics

Surface State Roughness << 1nm Figure Errors < λ</p>

Thermal constraints

Damage Thresholds

☞ J. Kuba Th-O-04☞ B. Steeg Tu-P-30

Conclusions

- Optical Resonator development is linked to the extension of user applications domain.
- High Damage threshold studies in the UV and mirror degradation by Synchrotron Radiation (cf. Fluorides) are still major issues.
- Research & Development in UV-VUV Optics for FEL still has a large interest, provided that improvement of the gain progresses as well.

Acknowledgments M.E. Couprie and the Super ACO FEL team The ELETTRA FEL Team M. Shinn and S. Benson A.Gatto, T. Feigl and S. Gunster