

The MIT Bates X-Ray Laser Project

Townsend Zwart MIT Bates Linac

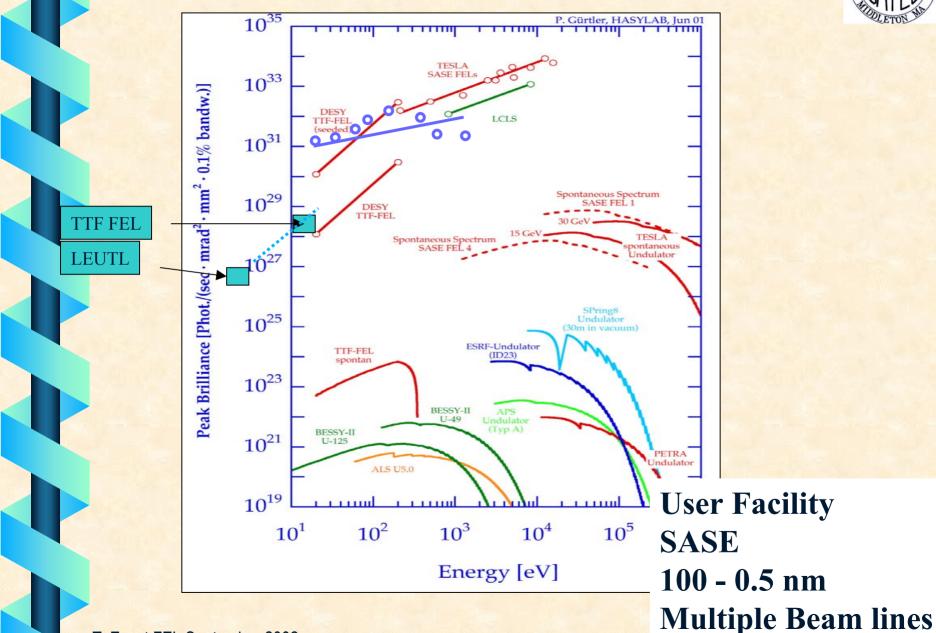
Science Driven Performance

Scope of Initial Proposal

Recent Activities at Bates: Visitors and Workshop

Facility Parameters

Use of Existing Bates Linac (100-30 nm FEL)


0.5-100 nm Bates/Greenfield X-Ray Laser

Upgrade Path

Conclusions & Future Plans T. Zwart FEL September 2002

Science Driven Performance

This is a Peak Brilliance Machine

Photon Energy/Pulse:

 $5 \text{ GW} \cdot 200 \text{ fs} = 1 \text{ mJ}$

Maximum Electron Current:

 $1 \text{ MHz} \cdot 500 \text{ pC} = 500 \text{ uA}$

 $P_{avg} < 1 \text{ kW}$

Compare to $P_{avg} \sim 5 \text{ kW}$ from <u>one</u> APS Undulator.

The challenge is to build an efficient machine which will distribute the pulses in a way that is experimentally useful. Considerations include pump probe requirements, time of flight requirements, signal averaging requirements etc...

Time Averaged Brilliance will still be good

LCLS type duty factor/beamline to begin: $100 \text{ Hz} \cdot 200 \text{ fs} = 2 \times 10^{-11}$

Average Brilliance: 2 x 10²⁰

Compare APS Undulator A: 4 x 10¹⁹

Scope of Initial Proposal

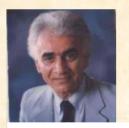
Three year design study which will assess:

Scientific Impact and Opportunities of 100 - 0.5 nm Laser User Facility Readiness of Technology for Construction of such a Facility Three year study will deliver: Optimized Greenfield Design of X-Ray Laser Facility Site Specific Details for Implementation of X-Ray Laser at MIT-Bates Three year study will also support: Involvement of other Laboratories and Institutions

A series of workshops to achieve the above goals

Educational Opportunities for Students and Professionals in the field of X-Ray Lasers

A Few People on the MIT Bates X-Ray Laser Project Team


F. Wang

D. Moncton

M. Farkhondeh

A. Zolfaghari

C. Tschalar

S. Sobcynski

E. Ihloff

J. van der Laan

Recent Visitors to MIT Bates

Norbert Holtkamp 5/20/2002:

"Superconducting structures are the clear choice for high beam power facilities."

Bob Kustom 5/21/2002:

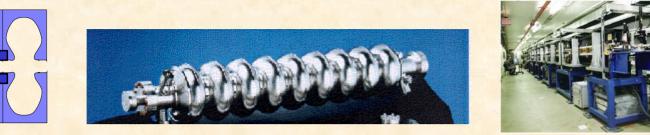
"Don't use so many klystrons."

Dave Dowell 5/30/2002:

"The gun for such a facility is a non-trivial problem. Lower frequency for higher duty factor." X.J. Wang 5/31/2002:

"Guns may be optimized at lower bunch charges, 100 pC vs 1 nC. The laser for such a facility is in hand."

Mike Borland 6/7/2002:


"You should worry about CSR and compression. Paul Emma has written code to tell you where to put the bunch compressors." Efim Gluskin 6/13/2002:

"The undulators for FEL photon wavelengths between 1 and 100 nm are straightforward." Bill Graves 6/14/2002:

"I see no principle problem in the construction of such a facility."

June 19-20 Bates X-Ray Laser Workshop

Attendees:

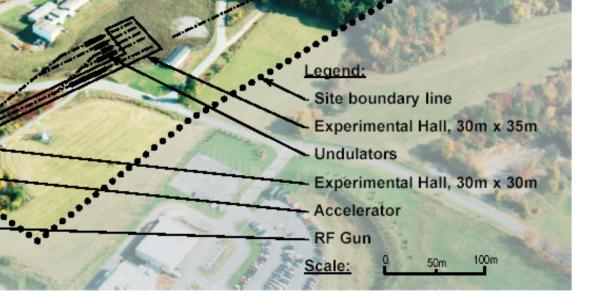
Y. Cho, J. Galayda, J. Hastings, K. J. Kim, S. Krinsky, S. Milton, D. McWhan, L. Rivkin, J. Schneider, G. Shenoy, T. Shintake

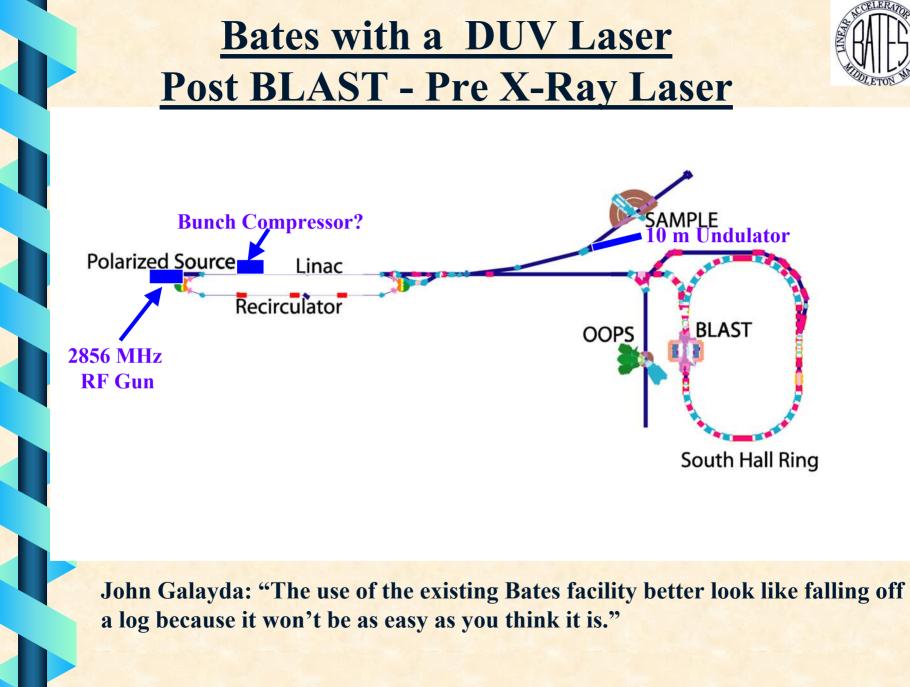
Topics:

FEL Theory Technology Considerations Scientific Impact Straw Proposal

Bates Xray Laser Parameters

λ	100 - 0.5	nm	
Beam Energy	3.8	GeV	
Linac Freq.	1.3	GHz	(Tesla SC Structure)
Linac Gradient	20	MeV/m	
Active Linac Length	192	m	(24 Cryomodules)
Linac/Facility Length	400	m	
Avg. Current	<10	uA	(Beam Power < 10% RF Power)
Duty Factor	10	%	
Rep. Rate	1	Hz	(Quasi CW)
AC Installation	5	MW	


Bates Xray Laser Parameters cont.



Cost)

Gun Freq	1.3	GHz	Copper 0.1% DF
Bunch Charge	500	рС	
Emittance	1	um	
Bunch Spacing	1	us	(Inside 10 us macropulse)
Laser Pulse Width	4	ps	DUVFEL Laser
Peak Current	2	kA	
ΔΕ/Ε	0.02	%	
# Undulators	8		(Allows ~20 Limited by Cos
Undulator Period	3-6	cm	
Undulator K	1.17/2.8		
Undulator Lengths	6-30	m	

MIT X-BAY LASEB FACILITY Aerial Site Plan

Bates DUV Stage 2005-2010

- Existing Linac 550 MeV could provide radiation to ~ 80 nm .
- RF Gun must be installed. This gun could be identical to the LCLS gun.
- Construct ~10-20 m Undulator (LEUTL,TTF) on the 14 ° line.
- Additional Compressor may be required. Remove one 7 m linac section at ~200 MeV.
- Use existing Chicane, R₅₆=35 mm/%, and the last linac section for compression. Compression factor of eight.
- Establish user base and demonstrate Higher Harmonic Generation
- The recirculator may be used to see how well the beam properties can be preserved, study CSR, and possibly generate SASE radiation at 30 nm
- The recirculator may also be configured for compression. (cf I.V. Bazarov)
- Use this facilty post BLAST, pre XFEL, 2005-2010?

Technology Exists Today for 0.5 nm

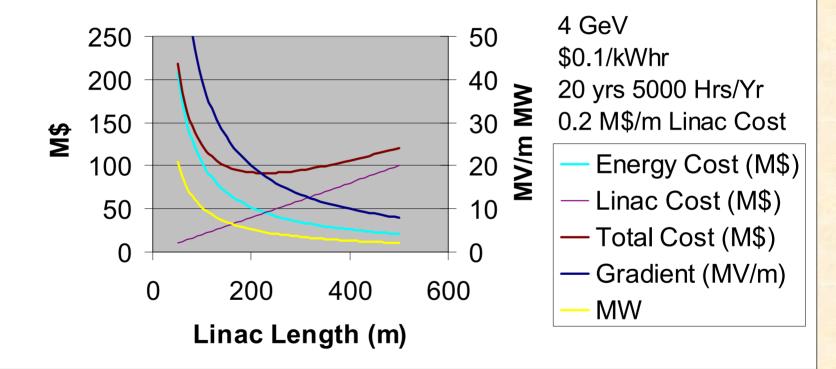
• Guns:

Adequate performance has been demonstrated. Room for continuing R&D and improvement. Not a costdriver.

• Compression:

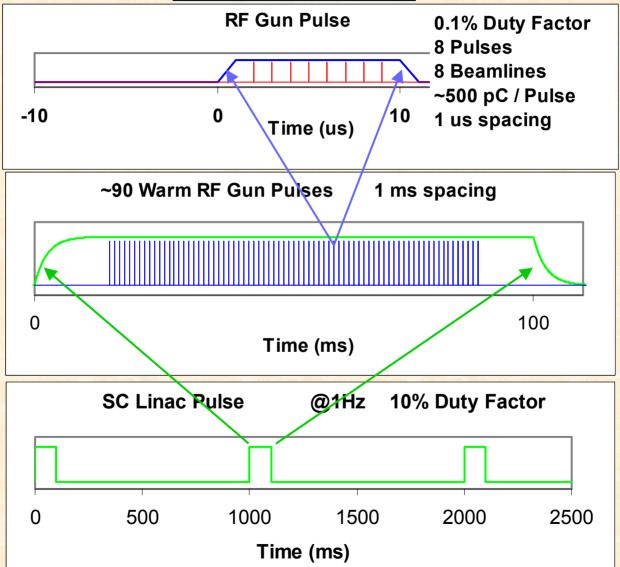
Adequate performance has been demonstrated. Needs careful study and simulation for optimization. Experimental data on CSR effects would be useful. Not a cost driver.

• Linac:


Successful operation at Tesla Test Facility, JLAB. Capital cost driver.

• Undulator:

Well established. Successful experience at LEUTL, TTF. Make use of investment in LCLS design. Capital Cost driver.

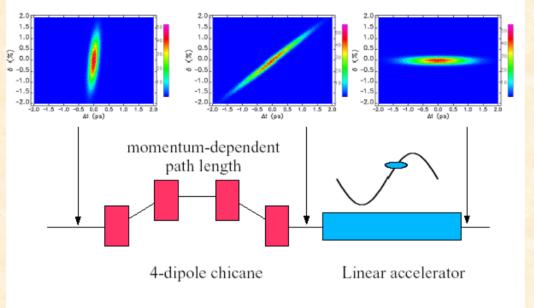

CW FEL Linac Length Optimization

Pulse Structure

Quasi - CW

T. Zwart FEL September 2002

Pulse Structure

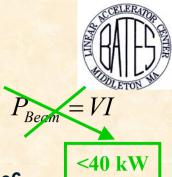

- Allows the use of normal conducting RF Gun
- Allows Higher Q_{ext} and thus lowers installed RF Power
- Permits use of Ferrite Extraction Kickers
- Duty Factor of 10 % allows the use of the highest Gradients

Optimized Compression Scheme

Courtesy Mike Borland

Magnetic Bunch Compression

Design Considerations for Linac FEL Drivers


M. Borland, June 6, 2002

1) Accelerate Hard Early

- 2) Chirp Before the Energy becomes too high
- 3) Finish Compression before first extraction beamline
- 4) Keep Deflection Angles Small due to CSR Effects

---> Compressors located at 200 MeV and 1000 MeV ?

AC Budget

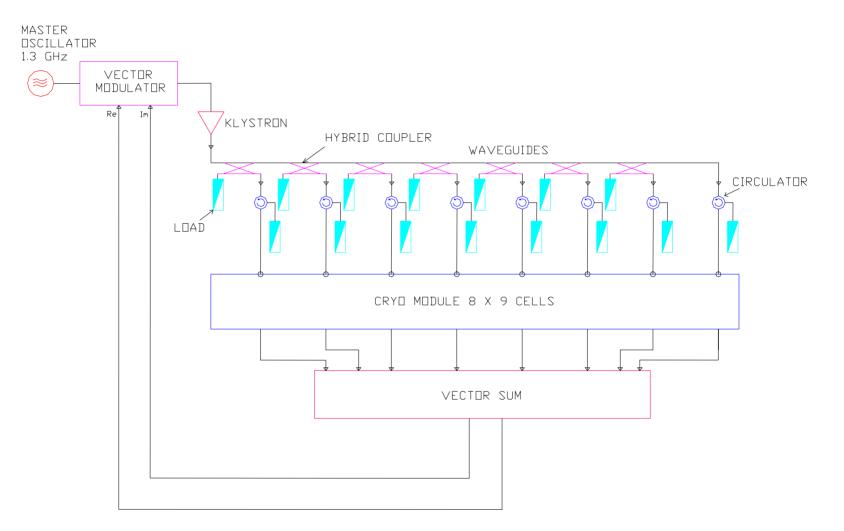
$P_{RF} = \frac{V^2}{2 \cdot 1038 \cdot Q_{Ext}L} \qquad P_{RL}$	$_{F_Heat} = 15 \cdot \left(\frac{V}{15M} \right)$	$\left(\frac{1}{V/m}\right)^2 W$	@2K
External Q	1.5e7	,,	cf TESL/
Fill Time	2.5	ms	cf TESLA
Rep Rate	1	Hz	
Pulse Length	100	ms	
DF	10	%	cf TESLA
RF Power Pk/Avg	7/0.7	MW	
RF AC Power Pk/Avg	17/1.7	MW	
Heat Load @ 2K Static	0.07	kW	
Heat Load @ 2K Active Pk/Avg	6	kW	
Refrigerator Power Pk/Avg	6/0.6	MW	
Cryo + RF Wall Plug Power Avg	2.4	MW	

cf TESLA 3e6
cf TESLA 0.5
cf TESLA 0.7%

2.5 MW peak - 150 kW av. at 1.3 GHz

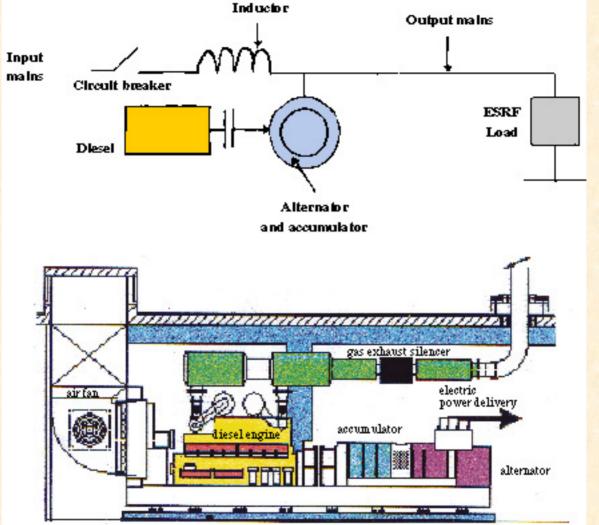
24 Klystrons 250 kW Peak - 25 kW avg 1 Klystron/1 Cryomodule

- Modulating anode
- High power in long pulse duration (1 ms)
- High gain: 43 dB typical


Good efficiency: 47% typical

High reliability, long life

One Klystron/Cryomodule



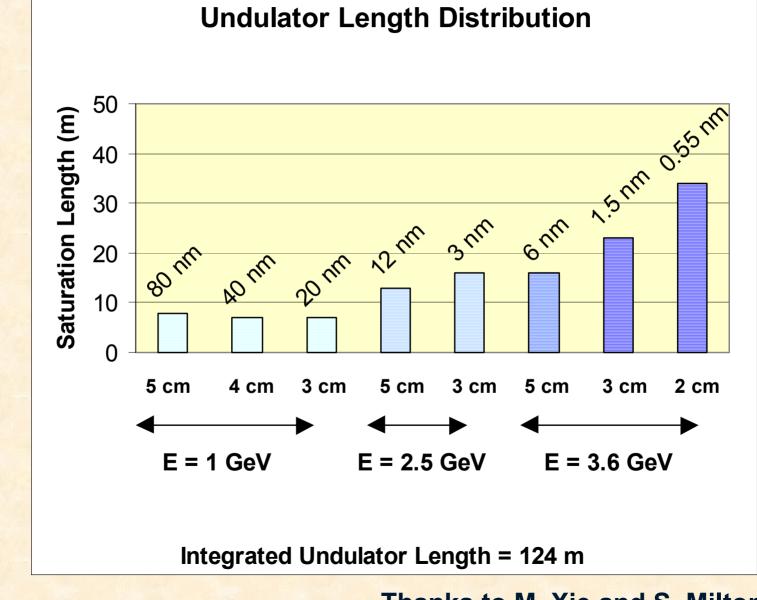
Energy Storage and AC Line Decoupling

ESRF: 5 MW for 5 seconds X-Ray Laser RF: ~3 MW for 100 ms @ 1 Hz No line noise! Fewer Power Failures. 21 T. Zwart FEL September 2002

Efim Gluskin 6/13/2002: "The undulators for FEL photon wavelengths between 1 and 100 nm are straightforward.

$$\lambda = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{{\rm K}^2}{2} \right)$$

- λ_{u} Undu lator period
- K Undu lator parameter
- γ Relativistic factor



ARGONNE NATIONAL LABORATORY

Many Optical Beamlines

Thanks to M. Xie and S. Milton

23

Upgrade Path

Additional Users

Increased Time Averaged Brilliance

Shorter Wavelengths

Facility would allow additional beamlines as funding permits.

• SC Linac would allow use of full 10% duty factor as gun technology matures. Time averaged Brilliance could surpass what is available at today's 3rd generation light sources.

Linac could be extended while proposed facility is operational.

Conclusions

The Technology Exists today to Build a user X-Ray Laser Facility with photon wavelengths between 0.5 and 100 nm.

This facility would consist of:

A High Brightness, RF Gun A 192 m ~3.8 GeV Superconducting 1.3 GHz Electron Linac 2 or 3 Stations of Magnetic Compression 8 Photon Beamlines

This facility would make optimum use of existing technology and be constructed in a way that can evolve to produce higher time averaged brilliance and shorter wavelengths as technology improves.

Brighter Guns
Additional Beamlines
Shorter Period Undulators (SC structures)
Longer Linac

This project envisions a 2-4 year design stage followed by a 4-6 year construction stage and would be available for science between 2010 - 2012.