

4-CHANNEL PLANAR FEM FOR HIGH-POWER MM-WAVE GENERATION

A.V. Arzhannikov, V.T. Astrelin, V.B. Bobylev, ^a<u>N.S. Ginzburg</u>, V.G. Ivanenko, P.V. Kalinin, S.A. Kuznetsov, ^aN.Yu. Peskov, ^bP.V. Petrov, ^aA.S. Sergeev,

S.L. Sinitsky, V.D. Stepanov

Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia ^aInstitute of Applied Physics, N-Novgorod, 603600, Russia ^bRFNC-VNIITF, Snezhinsk, 456770, Russia

Work is supported under

- Russian Scientific Program "Physics of Microwaves", project #1.3;
- RFBR, project #01-02-16749;
- INTAS, project #2192.

OUTLINE

- PLANAR FEM WITH 2D-DISTRIBUTED FEEDBACK, THE FIRST OPERATION, FEL 1999
- MULTI-CHANNEL PLANAR FEM, CONCEPTUAL DESIGN OF 4-BEAM OSCILLATOR
- SIMULATION OF MULTI-CHANNEL FEM
- CURRENT STATUS OF EXPERIMENT
- SUMMARY

CONCEPT OF PLANAR FEM DRIVEN BYA SHEET BEAM

SCHEME OF SINGLE MODULE PLANAR FEM BASED ON THE ELMI ACCELERTOR

EXPERIMENTAL TESTING 2-D BRAGG REFLECTORS OF DIFFERENT CORRUGATION PROFILES

ELMI

RADIATION SPECTRUM OF FEM

MICROWAVE POWER AS FUNCTION OF UNDULATOR FIELD AMPLITUDE

Electron energy - 0.9 MeV Longitudinal field - 12 kG

Red line - computer simulations *Blue points* - experimental measurements within 74.7-75.7GHz (filter 1)

PLANAR FEM WITH

COMBINED BRAGG RESONATOR

Bragg resonator consisting of 2-D and 1-D gratings

Establishment of the stationary regime of oscillations

SPATIAL PROFILES OF THE AMPLITUDES OF THE PARTIAL WAVES AT THE STATIONARY REGIME OF GENERATION (COMBINED PLANAR RESONATOR)

PROJECT OF FULL-SCALE PLANAR FEM BASED ON THE U-2 ACCELERATOR

PROJECT OF MULTI-BEAM PLANAR FEM

Schematic of FEM consisting of N planar modules connected by transverse electromagnetic fluxes

Schematic of single planar FEM module exploiting a 2-D Bragg resonator

Structure of the partial waves at the stationary regime of generation

ELMI

Oscillation build-up in 4-modules FEM

COMPUTER SIMULATION OF 4 SHEET BEAMS FORMATION

COMPUTER SIMULATION OF 4 SHEET BEAMS FORMATION

Pitch angles vs longitudinal coordinate for different electron fractions

Y▲

DESIGN OF THE UNDULATOR FOR 4 -MODULES FEM

UNDULATOR FIELD DISTRIBUTION

along channels:

across channels:

ELMI

Bragg deflector for 75 GHz radiation

ELMI

EXPERIMENTAL RESULTS $(H_{\parallel}=10 \text{ kG}, H_{\perp}=0.7 \text{ kG})$

With absorbers of transverse waves

LIGHT EMISSION OF NEON-LAMP PANEL UNDER MM-RADIATION PULSE

Output window sizes - 2x9 cm Panel sizes - 20x20 cm Distance from the output window - 0.5 m

Longitudinal magnetic field - 10 kG Transverse magnetic field - 0.7 kG

SUMMARY

• Operation of planar FEM-oscillator with 2-D distributed feedback was experimentally investigated in the 75GHz frequency band. The 300 ns, 100 MW pulses was generated

• The project of multi-channel FEM to increase radiation power was proposed.

• Theoretical consideration demonstrates possibility of synchronization up to 10 FEM modules using transverse energy fluxes

• Design of 75GHz 4-channel FEM-oscillator carried out and the experimental testing of the basic units at the ELMIaccelerator is under progress