Ion-Electron Beam Oscillations at Bates

C. Tschalaer, K. Jacobs, F. Wang

Ions created in the restgas by an oscillating electron beam are themselves oscillating about the beam thus enhancing the beam oscillations

■Undisturbed vertical motion of electrons in a storage ring:

 $\dot{y}_e + c^2 K(z_0 + ct) \times y_e = 0$ $z_0 = \text{position of electron at } t = 0$

Solution: $y_e = a \times r_o(z_o + ct) cos \varphi(z_0, t)$ a = relative oscillation amplitude $r_0 = \text{damped beam radius} = \sqrt{\epsilon_y \beta(z_0 + ct)}$

Periodicity in z_0 requires

$$\varphi = \phi(z_o + ct) + \frac{2\pi}{L} z_o(n - v) + \phi_n(z_o)$$

$$\phi_n(z_o) = \phi_n(z_o + L)$$

$$v = tune$$

$$L = ring circumference$$

$$n = int eger$$

Choose special electron oscillation mode: $\phi_n(z_o)$

→ Equation for electron beam oscillation in mode n:

$$y_{beam} = y_{electron}(z_o = z - ct) = ar_o(z)\cos\varphi(z, t)$$

$$\varphi = \phi(z) + \phi_n + \Omega_n \frac{z}{c} - \Omega_n t$$

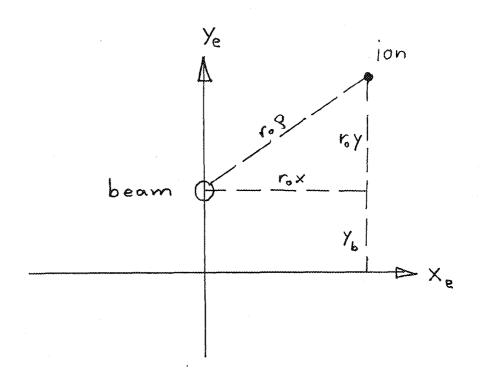
$$\Omega_n = \frac{2\pi}{T}(n - v) \qquad (T = L/c)$$

Qualitative mechanism of ion formation and exitation of electron beam mode n:

Fig. 1

Quantitative Treatment

Ion oscillations exited by a vertically oscillating beam:



Choose special electron oscillation mode: $\phi_n(z_o)$

 \rightarrow Equation for electron beam oscillation in mode n:

$$\begin{aligned} \mathbf{y}_{beam} &= \mathbf{y}_{electron}(z_o = z - ct) = ar_o(z)\cos\varphi(z,t) \\ \varphi &= \phi(z) + \phi_n + \Omega_n \frac{z}{c} - \Omega_n t \\ \Omega_n &\equiv \frac{2\pi}{T} (n - v) \qquad \left(T = L/c\right) \end{aligned}$$

Qualitative mechanism of ion formation and exitation of electron beam mode n:

Fig. 1

Quantitative Treatment

Ion oscillations exited by a vertically oscillating beam:

Electric force on ions of mass m:

$$F_{x} = -m\omega^{2} r_{o} \mathbf{g}(\rho) x$$

$$F_{y} = -m\omega^{2} r_{o} \mathbf{g}(\rho) y$$

$$\omega^{2} = \frac{60eV}{m \times r_{o}^{2}} \frac{I_{o}}{(A)} = 1.174 \times 10^{-4} \frac{m_{e}}{m} \frac{c^{2}}{r_{o}^{2}} \frac{I_{o}}{(A)}$$

Equ. of motion for ions created at $t = t_0$:

$$\frac{d^2x}{d\theta^2} + \frac{g(\rho)}{\mu_n^2} x = 0$$

$$\frac{d^2y}{d\theta^2} + \frac{g(\rho)}{\mu_n^2} y = a\cos\varphi$$

$$\theta = |\Omega_n|(t - t_o) = \varphi - \varphi_o$$

$$\mu_n^2 = \Omega_n^2/\omega^2$$

Solutions:

 $x(\theta, \varphi)$ and $y(\theta, \varphi)$ periodic in φ for x,y <<1 $g(\rho) \cong 1 \to \text{harmonic oscillation}$ for $g(\rho) = (1 - e^{-\rho^2})/\rho^2$ Gaussian beam density compute numerical solutions x and y

Force of a trace of ions formed within dt₀ on beam electrons:

$$dF_{x} = 0 \qquad \text{(symmetry)}$$

$$dF_{y} = m\omega^{2} r_{o} g(\rho) y \times \frac{d\varepsilon}{dt} \times dt_{0}$$

 $\frac{d\varepsilon}{dt}dt_0 = \text{fraction of beam charge contained in the ion trace}$

Force of all ions:

$$F_{y} = \int_{t_{0} = -\infty}^{t} dF_{y} \equiv m_{e} \gamma k f \left(\varphi\right)$$

$$f\left(\varphi\right) = \int_{0}^{\infty} d\theta e^{-\tilde{\gamma}\theta} g \left[\rho\left(\theta, \varphi\right)\right] y\left(\theta, \varphi\right)$$

$$k = \frac{1.87 \times 10^{-5}}{\gamma} \frac{I_{0}}{(A)} \frac{c^{2}T}{r_{0}\left(v - n\right)} \left(\frac{d\varepsilon}{dt}\right)$$

$$\tilde{\gamma} = \text{diffusion factor}$$

Since y, x, ρ periodic in $\phi \rightarrow f(\phi)$ periodic in ϕ

$$\rightarrow f(\varphi) \equiv \sum_{m} a_{m} \cos(m\varphi) + b_{m} \sin(m\varphi)$$

Total acceleration of beam electrons by all ions

$$\Delta \ddot{y}_e = F_y / m_e \gamma = k f (\varphi)$$

Modified equ. of motion of beam electrons

$$\ddot{y}_e + c^2 K(z) y_e = k f(\varphi) = k \sum_m a_m \cos(m\varphi) + b_m \sin(m\varphi)$$

Since the "free" oscillations are of the form $\cos \varphi$, $\sin \varphi$, only the m=1 components of f (φ) contribute significantly to the oscillation (resonance):

$$y_e \cong a r_0 \cos \varphi - \frac{k \beta \overline{\beta}}{2c^2} \varphi \overline{b}_1 \cos \varphi + \frac{k \beta \overline{\beta}}{2c^2} \varphi \overline{a}_1 \sin \varphi$$

Ion induced growth in beam oscill. amplitude:

$$\frac{da}{dt} /_{ion} = -\frac{k \beta \overline{\beta}}{2c^2 F_0} \overline{b}_1 \frac{d\varphi}{dt} = +\frac{0.964 \times 10^{-5}}{\gamma} \frac{I_0}{(A)} \left(\frac{d\varepsilon}{dt}\right) \frac{L\overline{b}_1}{\varepsilon_{\gamma} (n-v)}$$

Condition for starting up beam oscillations:

Assume: Only competing process considered is exponential synchrotron damping:

$$\frac{da}{dt} \Big/_{damp} = -\frac{a}{t_d}$$

Oscillations start if

$$\frac{da}{dt} /_{ion} > \frac{d}{t_d}$$

at small amplitudes (harmonic oscillations) where

$$\frac{\overline{b}_1}{a} = \frac{\overline{\mu}_n^2 \left(1 + \overline{\mu}_n^2\right)}{\left(1 - \overline{\mu}_n^2\right)^2}$$

→ Start up condition:

$$S_{0} = 0.93 \times 10^{-5} \frac{\mu_{n}^{2} \left(1 + \mu_{n}^{2}\right)}{\left(1 - \mu_{n}^{2}\right)^{2}} \frac{t_{d}}{\gamma (n - \nu)} \frac{I_{0}}{(A)} \left(\frac{d\varepsilon}{dt}\right) \frac{L}{\varepsilon_{y}} > 1$$

Maximum amplitude is reached when b₁ has decreased (due to smaller ion-electron coupling at large oscillation amplitudes) to a value b₁ (a_{max}) where

$$S = 0.93 \times 10^{-5} \left(\frac{b_1}{a} \right)_{a_{\text{max}}} \frac{t_d}{\gamma (n - \nu)} \frac{I_0}{(A)} \left(\frac{d\varepsilon}{dt} \right) \frac{L}{\varepsilon_y} = 1$$

Numerical results of b₁/a for Gaussian beam densities: (Fig 2)

Find
$$b_1 / a \cong 3.5 a^{-1.85} \mu_n^{-0.2}$$

Using $d\varepsilon / dt \cong 0.088 (Hz) \times M \times p / nTorr$
Find $r_0 a_{\text{max}} = A_{\text{max}} \cong 2.7 (mm) R^* G^* I^* T^* \sqrt{\beta / (m)}$
 $R^* = (t_d / s)^{0.54} \gamma^{-0.54} (L / m)^{0.6} (\varepsilon_y / nm)^{-0.1}$
 $G^* = M^{0.5} (p / nTorr)^{0.54}$
 $I^* = (I_0 / A)^{0.6}$
 $T^* = v^{0.05} (n - v)^{-0.65}$

Results from first SHR measurements, January 1999

Qualitative result from BPM changing ring tune from

$$\nu = 7.83 \rightarrow 8.05$$
: Fig 3

SHR Parameters

$$E_0 = 0.66 \text{ GeV}$$
 $\gamma = 1292$
 $t_d = 0.47 s$
 $L = 190 m$
 $\varepsilon_y = 7.3 nm$
 $v = 7.83(8.05)$

For N₂ or CO: M=28 p=3nTorr For H₂: M=2 p \cong 20nTorr $G^* = 9.6$ $G^* = 7.1$

Start-up limits S₀=1 for N₂ and H₂ ion induced oscillations: Find from Fig.4

 $3nTorr N_2 \text{ or CO, } I_0 \gtrsim 10mA, \quad 20nTorr H_2, I_0 \cong 100mA$ $n-\nu > 0.12$ $n-\nu > 3$ - Max amplitudes at SHR internal target $(\beta_y = 2m)$:

Find from Fig. 5:

for
$$3nTorr N_2$$
 for $20nTorr H_2$
$$v = 7.83 \quad n = 8 \} A_{max} = 5.9mm \qquad v = 7.83 \quad n = 11 \} A_{max} < 0.7mm$$

$$I_0 = 60mA \qquad A_{max} = 3.1mm \qquad v = 8.05 \quad n = 11 \} A_{max} < 0.3mm$$

$$I_0 = 120mA \qquad A_{max} = 3.1mm \qquad I_0 = 120mA \qquad A_{max} < 0.3mm$$

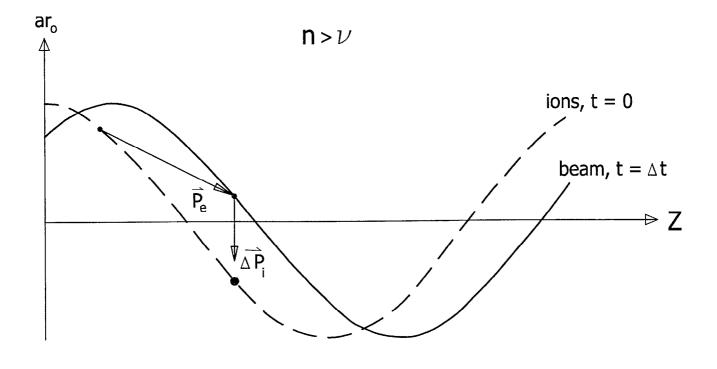
Good agreement with vertical beam clearance in 15 mm diameter target tube

Conclusion

- Ion exitations of beam oscillations are real
- Single mode calculations agree reasonably with beam width measurements
- Effect of tune on oscillation amplitude confirmed
- Effect of gas pressure needs testing
- Effect of current needs testing
- Effect of emittance is small
- Effect of beam energy needs testing

Prevention of oscillations:

- tune above nearest integer
- Gas pressure (N₂, CO) low
- Fast ion clearing by beam gap?
 (slow clearing by electrodes not effective)



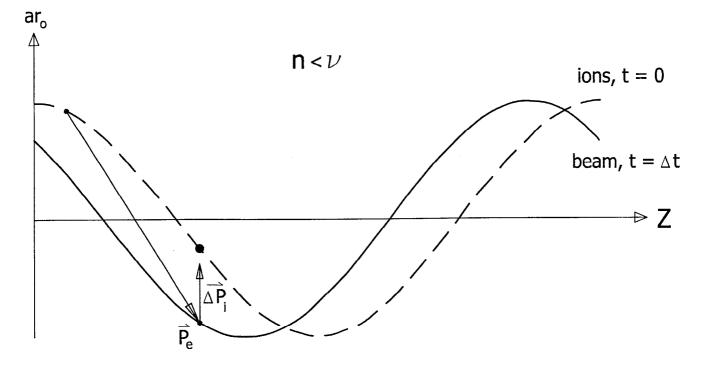


Fig. 1

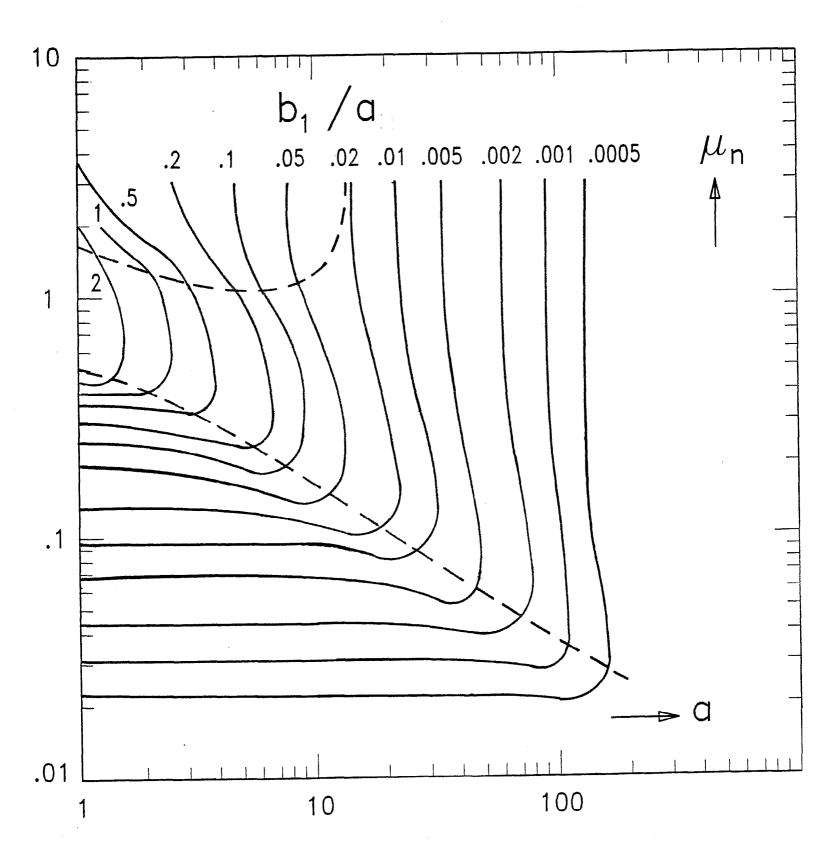


Fig 2

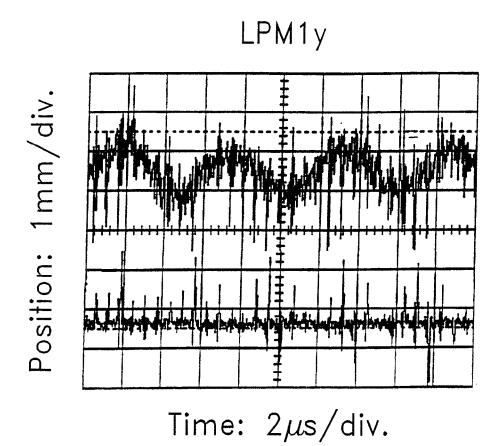


Fig. 3

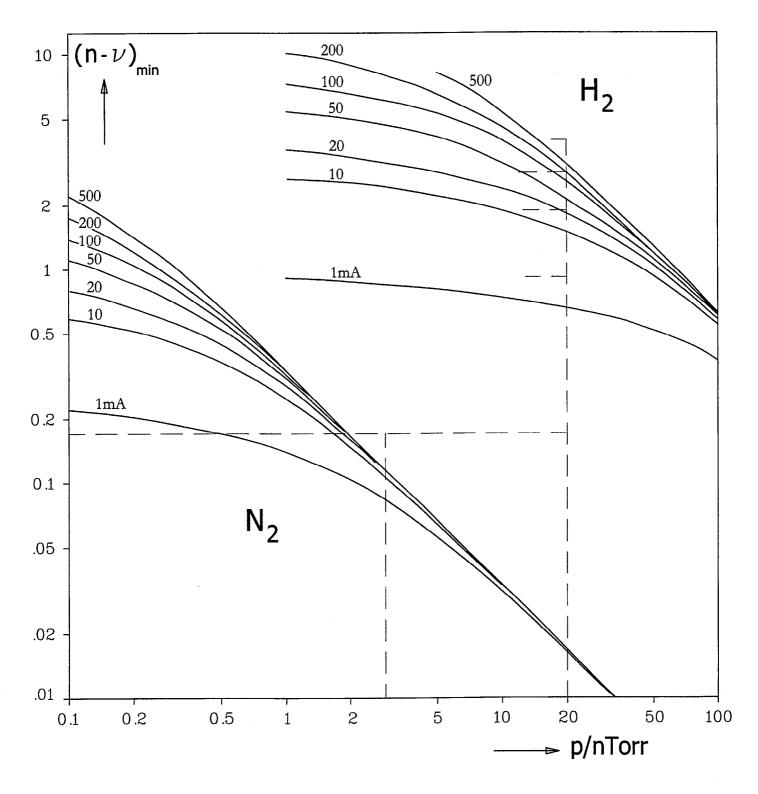


Fig. 4

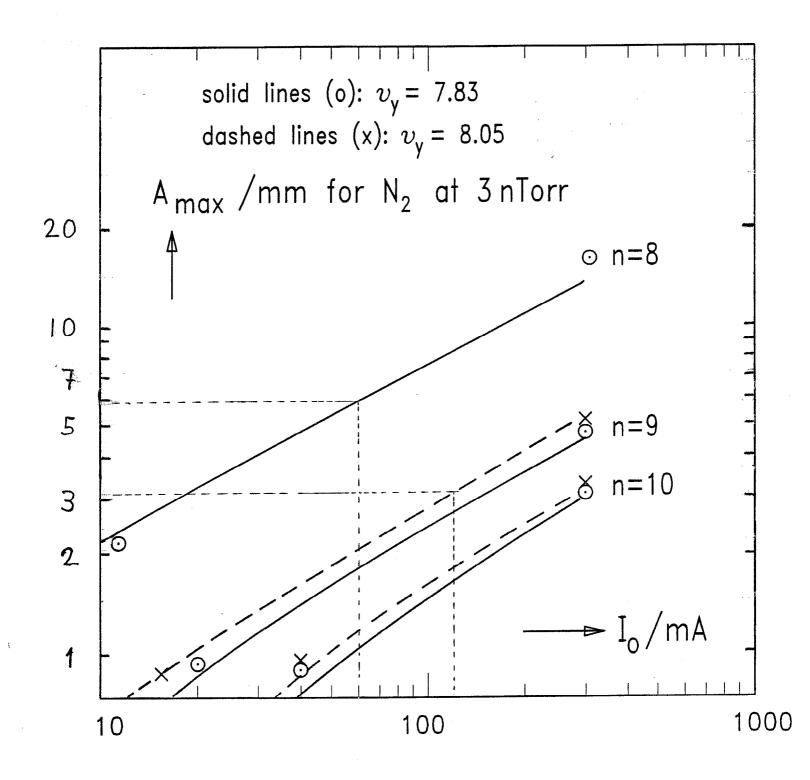


Fig. 5

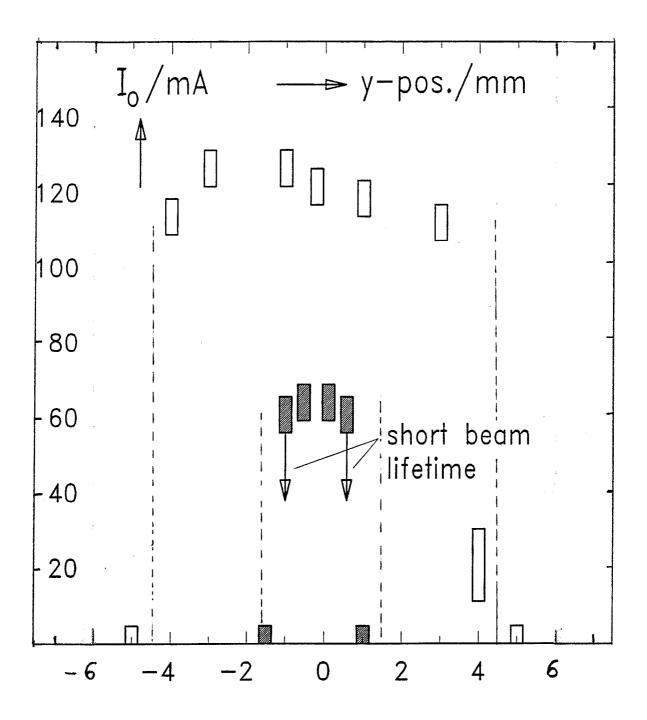


Fig. 6