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Theoretical Model and Assumptions 

l Consider high-intensity ion beam with distribu- 
tion function fb(x, p, t), characteristic radius Q, 
and directed axial momentum ybm&c, propagat- 
ing in z-direction through background population 
of electrons with distribution function &(x, p, t). 

l Ions have high directed axial velocity Vj = &, 

whereas electrons are nonrelativistic and station- 
ary in the laboratory frame with s d3pp,f,(x, p,t) ~21 

0. 

l Ion beam is treated as continuous in the z-direction, 
and applied transverse focusing force is modeled 
bY 

Fb f OC = -YbmbW;bXl- 

in the smooth-beam approximation, where xl = 
LEG, + &, is transverse displacement from beam 
axis. 



Theoretical Model and Assumptions 

l For ion-rich beam, the space-charge force on an 
electron, F”, = eVq5, provides transverse confine- 
ment of the electrons by the electrostatic poten- 
tial 4(x, t). 

l Ion motion in the beam frame is assumed to be 
nonrelativistic, with 

Where 6pz = j’& - ~b?nb,&c, and ~@n&c iS the di- 
rected axial momentum. 

l Allow arbitrary space-charge intensity consistent 
with transverse confinement of the ions by the 
focusing field. 



Theoretical Model and Assumptions 

l Analysis is carried out in the electrostatic approx- 
imation where the self-generated electric field is 

ES(x, t) = 44(x, t) 

l The electrostatic potential &z,Y, X, t) is deter- 
mined self-consistently from Poisson’s equation 

p(-) = -4re(&,nb - n,> 

where nb(x, t) F s d3pfb(X, p, t> and ne = f d3pfe(x, p, t> 
are the ion and electron number densities. 

l Assume that the ion axial VelOCity profile vZb(X, t) E 
Pbc is approximately Uniform over the beam cross 
section. The self-generated magnetic field 

BS (x, t> = VA,(x, t) x & 

is determined from 

V*A, = -dd?$,e@bnb 

where the electrons are assumed to carry zero 
axial current in the laboratory frame. (This as- 
sumption can be relaxed.) 



Nonlinear Vlasov-Maxwell Equations 

l In the context of these assumptions, the electron 
distribution fe(x, p, t) evolves nonlinearly accord- 
ing to 

{ 
‘a $+V.- dx +eTJ+ 

d 
’ dp fe(x,P,t> = 0 

> 

where -e is the electron charge, and v = p/me. 

l For the ions, the nonlinear Vlasov equation for 
jj,(x, p, t) beco’mes 

-- fbk P, t> = 0 

l Here, v = p/‘yb??%b is the ion velocity, +.&,e is the 
ion charge, and +(x,t) is the combined potential 
defined by 

$(x, t> = $b, t> - PbAz(X, t> 



Nonlinear Vlasov-Maxwell Equations 

l The electrostatic potential qS(x,t) and combined 
potential 5$(x, t) = 4(x, t) - PbAz(x, t) are deter- 
mined self-consistently from 

o*c$ = -4re (zb Jd3Pfb- Jd3pfe) 

o** = -4ne ($/d3Pfb-/d3Pfe) 

l In Maxwell’s equations for gS(x,t) and +(x,t) 

nb(x, t> = 
J 

d3?‘fb(x, ??t t) 

n&&t> = 
J 

d3Pfe(x7 P7 t> 

are the ion and electron particle densities, respec- 
tively. 



Theoretical Model and Assumptions 

l Under equilibrium conditions (a/& = 0), treat the 
ion and electron properties as spatially uniform in 
the z-direction (a/& = 0). 

l In the stability analysis, assume small-amplitude 
perturbations with Z- and t-variations of the 
form 

exp(ik,z - iwt) 

where Imw > 0 corresponds to instability (tempo- 
ral growth), at?d kz = 2rn/L is the axial wavenum- 
ber, where n is an integer, and L is the axial peri- 
odicity length of the perturbation. (L = 2d3 for 
a storage ring, where R is the ring radius.) 

l Stability analysis assumes perturbations with suf- 
ficiently long axial wavelength that 



Theoretical Model and Assumptions 

The assumption of long axial wavelength with k’$$ << 
1 leads to several simplifications in the analysis of the 
Vlasov-Maxwell equations. 

o The three-dimensional Laplacian v2 is approxi- 
mated by 

v* 
a* a* +(7:x- - 

8x2 + dy2 

l The perturbed axial forces on the electrons and 
rons, e.g., T 

d d 
6F, = e--+S, and SFb = -Zbedb@, 

dz x 
are treated as small in comparison with the trans- 
verse forces. 

l Two-stream instability will be strongest for high- 
frequency perturbations and small axial momen- 
tum spreads satisfying 

F - Pbc > VTbz 
z 

where VT& = (2Tbz/~b~b)1’2 and VTez = (2Tez/me)1’2 
are the characteristic axial thermal speeds. 
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Nonlinear Vlasov-Maxwell Equations 

l Assume that a perfectly conducting cylindrical 
wall is located at radius r = rW, where r = (x2 + 
y*)l/*. Impose the requirement that 

S [E 1 0 T=r, = [E 1 z r=r, = S LB 1 T r=r, =o 

l In terms of the potentials 4(x,t) and $(x,t), this 
gives 

, d T = rw, e,~, t) = 0 

a r = rw,e,z,t) = 0 

where the constant values of the potentials at 
r = rw have been taken equal to zero without 
loss of generality. 
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Equilibrium Vlasov-Maxwell Equations 

Under quasisteady conditions, examine solutions 
to nonlinear Vlasov-Maxwell equations with 

a d 2X0 -=-= 
at ae a~ 

Vlasov-Maxwell equations support broad range of 
equilibrium solutions for the beam ions and back- 
ground electrons of the general form 

f,"6T, P> = Fb(Hlb)Gb(%) 

f,ob-7 P> = Fe(HLe)Ge(Pz) 

Here, Hlb and HI, are the single-particle Hamil- 
tonians defined by 

1 
l HLb = 

23/bmb 
P: + TYb b /!?b m u* r* + zbe[$‘(r) - 4’1 

HLe = - e[gSO(r) - 4’1 

where r = (x* + y*)l/*, and the constants $O = 
4( Or- - 0) and Go s +'(r = 0) are the on-axis 
values of the potentials. 
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Equilibrium Vlasov-Maxwell Equations 

The axial momentum distributions Gj(p,) (j = 
b,e) are normalized according to 

where G&%) is centered at pZ E ‘ybmb& and Ge(pZ) 
is centered at pz E 0. 

Many choices of Gj(pz) (j = b,e) are possible. 
One example cfor the beam ions) is the resonance 
distribution 

G&b) = ab 

d(Pz - “lbmbVb)* + a;] ’ 

where & = const. is a measure of the axial mo- 
mentum spread, 
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Equilibrium Vlasov-Maxwell Equations 

l For specified transverse distribution functions Fb(Hlb) 
and Fe(HIe), the equilibrium potentials 4’(r) and 
+O(r) are determined self-consistently from 

$fg-$I/b”(r) = -47re zb o 
Tnb 6-1 - n:(r> 
yb 1 

where n:(r) a‘nd n:(r) are the ion and electron 
density profiles 

n:(r) = 
.I 

d3pFb(fhb)Gb(Pz) 

n:(r) = 
.i 

d3PFe(H~,)Ge(pz) 

l Maxwell’s equations for 4’(r) and $O(r) are gen- 
era I ly nonlinear. 
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Equilibrium with Step-Function Density Profiles 

0 

0 

A simple class of equilibrium distribution func- 
tions Fb(H_ib) and Fe(Hle), which correspond to 
overlapping step-function density profiles for the 
beam ions and background electrons, is given by 

Fb(H_ib) = 

where 66, GLe, &,, and TIe are positive constants. 

Some straightforward algebraic manipulation shows 
that the corresponding density profiles are 

rb < T < rw - 

and 
- ne = fZ b6b = const., o<r<rb 

r-&r> = 

i- 

- 

0, rb < r < rzo - 

where f s fi&?$&, is the fractional charge neu- 
tralization. 
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Equilibrium with Step-Function Density Profiles 

PPPL PmiY PEW f 

l Introduce the ion plasma frequency-squared de- 
fined by 

-2 - 4r6bzze2 4N Z*e* 
Wpb = 

- b b 
Ybmb - ybmb$ 

where & = 7-&&r: is the number of beam ions per 
unit axial length. 

l Equilibrium analysis shows that the beam radius rb 
is related to ?&, Tie, &$, etc., by the equilibrium 
constraint conditions 

l The coefficients of rz in the above constraint con- 
ditions will be recognized as the depressed beta- 
tron frequencies 

for transverse particle motions, including self-field 
effects. 



Equilibrium with Step-Function Density Profiles 

0 

0 

Examine equilibrium constraint 
0 and Tie > 0. - 

Can show that both the ions 
radially confined provided 

conditions for ??lb > - 

and electrons are 

f<l 

@b (1 ,\ J- -_ 
-2q&; Jl <1 

which place restrictions on the allowed values of 
fractional charge neutralization f, and normalized 
beam intensity 6$/w&. 
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Thermal Equilibrium with Diffuse Density 
Profiles 

l Many choices of equilibrium distributions F&&b) 
and Fe(Hle) are possible. As another example, 
consider 

Eb 
Fb(HLb) = (27T~@?‘lq,T~b) exp 

-- 

, 

where 6b, Ge, Tlb, and Tie are positive Constants. 

l The corresponding equilibrium density profiles are 

r* + &e[+‘(r) - Go] 

n:(r) = ii,eXp 
{ 

&[mO(r) - $“I 1 

l The potentials $O(r) and $O(r) must be deter- 
mined numerically from the corresponding Maxwell 
equations, which are highly nonlinear. 
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Linearized Vlasov-Maxwell Equations 

0 

l 

Express all quantities in the nonlinear Vlasov-Maxwell 
equations as an equilibrium value plus a perturba- 
tion, e-g-, fb(% p, t> = f,0h?)+~fb(X,p,t), +(x,t) = 
$O(r> + WJ(X, t), etc. 

For small-amplitude perturbations, the linearized 
Vlasov equation for the ions becomes 

+ pz a, PI .a 
?bmb 82 -/bmb dxl 

- ‘-Ybmb+$b + ]xl*-+}~fbkP,t) 

Zbe d - - PI * hW(x7 t> Fb(Hlb)Gbh’d 
?‘bmb dfflb 
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Linearized Vlasov-Maxwell Equations 

l Similarly, the linearized Vlasov equation for the 
electrons is given by 

X hfe(X, P, t> 

- - 

l Linearized Vlasov-Maxwell equations are valid for 
small-amplitude perturbations about general choice 
of equilibrium distribution fUnCtiOnS Fb(&b) and 
Fe(Hle)- 
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Linearized Vlasov-Maxwell Equations 

The perturbed potentials S+(x) t) and S&x, t) are 
determined self-consistently in terms of the per- 
turbed distribution functions from the Maxwell 
equations 

(g+g)w = -he ($/d’pafb- /d3p6fe) 

,(~+$)y = -4re (Zb/d3PssS - /d3$fe) 

In the linearized VlaSOV eqUatiOnS for afb(x,p,t) 
and hf&x,p,t), it is important to recognize that 
the differential operator 

corresponds to the total time derivative follow- 
ing the particle motion in the total equilibrium 
(applied plus self-generated) field configuration. 
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Linearized Vlasov-Maxwell Equations 

o For amplifying perturbations, we integrate the lin- 
earized Vlasov equations from t’ = -00, where 
the perturbations are negligible small, up to the 
present time t’ = t, when the particle orbits x’(P) 
and p’(t’> pass through the phase-space point (x,p), 
i.e., 

x’(tl = t) = 

PQ’ =t) = a. 

l This gives for the perturbed d 

X 

P 

istr ibution funct ions d s t hfb(x, ??, t> = ZbeaHLbFb(Hlb)Gb(?‘d dt’ ” V’&(x’, t’) 
-co Ybmb 

d s t &fe(x, p, t> = -eaHLeFe(%e)Ge(pz) dt ‘b&b(x’, t’) 
-cc me 

where use has been made of dHy,/dt’ = 0 = 
dHLe/dt’. 
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Linearized Vlasov-Maxwell Equations 

l The ‘primed’ orbits for the beam ions solve z’(f) = 
2 + (Pz/?bmb)(f - t) and 

d 
-xk(t’) = 
dt’ 

d 
,,PW) 

zbe&+b”(T’) 
= -“l’bmbw;bX;(t’) - --q dr, &(t’) 

where r’*(t’) = d*(t’)+y’*(t’). Similarly, the ‘primed’ 
orbits for the -background electrons solve “I@‘) = 
25 + (PJme>(t’ - t>, and 

d e @O(r’) 
-gP;w = --g dr’ X’&‘) 

where x’&’ = t) = xl and p’Jt’ = t) = pL. 

21 



Linearized Vlasov-Maxwell Equations 

The orbit integral representations for hfb(x, p, t) 
and Gf&p,t) must of course be substituted into 
the Maxwell equations for &+!(x,t) and SgS(x,t) to 
determine the self-consistent evolution of the per- 
turbations. 

It is convenient to adopt a normal-mode approach 
in which perturbed quantities are expressed as 

afb(x, P, t> = 
e=-m k,=--(xJ 

x exp[;(N + k,2 - wt)] 

x exp[;(@ + k,.2 - wt)] 

22 



Linearized Vlasov-Maxwell Equations 

l Here, (~,y) = (r ~0.~0, r sin 6) is the transverse po- 
sition, the integer g is the azimuthal mode num- 
ber, k, = 2rn/L is the axial wavenumber, where n 
is an integer and L is the axial periodicity length, 
and w is the complex oscillation frequency. 

l When carrying out the t/-integration, Imw > 0 is 
assumed, corresponding to instability (temporal 
growth). 

l In linac geome&y, L is the fundamental periodicity 
length for Fourier analysis of the perturbations 
in the x-direction. In storage ring geometry, we 
make the identification L = 2d, where R is the 
major radius Of the Storage ring (R >> rb). 

22-1 



Linearized Vlasov-Maxwell Equations 

l Some straightforward algebra gives 

X 

a 

X 

for the beam 

ayr, p) = 

X 

X 

.i 0 
&J”(r) + i(w - kzvz) dr&$‘(r’) 

-cc 

exp[;e(@ - 6) - ;(w - k,uz)d} 
ions, where vuz = %/Ybmbr and 

d 
-eaH Fe(HIe)Ge(Pz) 

le 

.I 0 
6$‘(r) + i(w - kzvz) dr@(r’) 

-03 

exp[ie(O’ - 0) - i(w - k,Tz)rl} 
for the background electrons, where vz = p,/m,. 
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Linearized Vlasov-Maxwell Equations 

l Here, Imw > 0 is assumed, and 7 denotes the 
displaced time variable 

7- =-f-t 

l The radial and azimuthal orbits, r’(t’) and O’(t’), 

satisfy 
r’(t’ = t) = r 

> 0’(t’ = t) = 0 

and are related to the Cartesian orbits, x'(P) and 
y'(f), by X' = r’COSf3’ and y’ = r’sin8’. 
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Linearized Vlasov-Maxwell Equations 

l Finally, for self-consistency of the perturbed fields, 
Maxwell’s equations for 64”(r) and i@(r) can be 
expressed as 

( 
Id d e* -- --- 
rdrr& r* > hw-> 

- - -4xe d3p6ff(r, p) - 
s 

d3pSE(r,p) 

r 

( 
Id d t* -- --- 
rdrr& r* > Gw 

d3p6g(r,p) - d”phc(r,p) 

l The four coupled equations for &ff(r,p), Sfz(r,,p), 
&$‘(r) and @l(r) represent the final system of 
eigenvalue equations derived for small-amplitude 
perturbations about general equilibrium distribu- 
tions fT(r, p) = Fj(HLj)Gj(Pz). 
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Linearized Vlasov-Maxwell Equations 

l The coupled eigenvalue equations have a wide 
range of applicability, and can be used to de- 
termine the complex oscillation frequency w and 
detailed stability properties for a wide range of 
system parameters and choices of transverse dis- 
tribution functions Fb(H_ib) and Fe(Hle). 

l The principal challenge in analyzing the coupled 
eigenvalue equations is two-fold: 

(a) Depending-on the equilibrium profiles, the trans- 
verse orbits (r’, t9’) or (x’,y’) are often difficult 
to calculate in closed analytical form. 

(b) Once the orbits in the equilibrium fields are 
determined, the integrals over t’ are challeng- 
ing because the r/-orbits occur explicitly in the 
arguments of the ‘(yet unknown) eigenfunc- 
tion amplitudes @(r’) and &@(r’). 

25 



Linearized Vlasov-Maxwell Equations 

l For future reference, the ion and electron or- 
bit equations can be expressed in the convenient 
forms 

d* 
zxl(t’) + z&r’)x’Jt’) = 0 

and 
d* 

sxl(tf) + z&r’)x’Jt’) = 0 

Here, y,‘(r) agd z&r) are the (depressed) beta- 
tron frequencies-squared, including applied plus 
self-field effects: 

26 



Particle Orbits for Step-Function Density 
Profiles 

PPPL 
~~~5~ ~~1~ la 1 

For step-function density profiles, the (depressed) 
betatron frequencies are given exactly in the beam 
interior (0 < r < rb) by - 

1 1 
y,‘(r) = $Ew$b--$b -- 

( > rb2 
f 

l?‘bmb-2 
, 

v:(r) = cz s --z m wpb(l - f) 
b e 

where 9: and 6: are constants (independent of 
r), and ij$ = h@,Zfe*/?/bmb. 

The ion orbits that pass through (x,y,pz,py) at 
time t’ = t are (for 0 < r’ < rb) - 

x’(t’) = x cos(@) + 
1 

?‘bmbcb 
pz sin@-) 

Y’V) = y cos(i&,~) + 
1 

?‘bmbcb 
p9 sin(6p) 
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Particle Orbits for Step-Function Density 
Profiles 

l Similarly, the electron orbits are given by 
(for 0 < r’ < rb) - 

x’( t’) = X COS(VeT) + 
1 

- p, sin(c,T) 
m&e 

Y’ (0 
1 

= YCOS(V,T) + - p,siQe~) 
meve 

l kepresentatiofi of the orbits (r’,O’) in cylindrical 
coordinates is also readily obtained, where X’ = 
r’cos0’ and y’ = r’sin8’. We introduce 

Px = p~cosq5 

PY = pIsin 4 

where q5 is the azimuthal phase of pl. It then fol- 
lows that r’*(t’) = x’*(t’) +y’*(t’) can be expressed 
(for the ions, say) as 

r’*(t’) = $*[l+ cos(2&7)]+ p: [l - cos(%&r)] 

+ rpL 
rbmbcb 

cos(4 - 0) sin@@) 

28 



Dispersion Relation for Step-Function 
Density Profiles 

l Express s d3p - - l = Mom dpipl JIT dg5 s-“, dpz . - - i n 
calculations of Jd3p6f2 and Jd3pSTe. Because 
dFb(.&,)/aHlb and dFe(Hle)/aHle are indepen- 
dent of azimuthal momentum phase 4, what is 
required is the phase-averaged orbit integrals 

’ I&-,phpz) = +J - Jwb) 2T dq5 s / - 
0 27r -m 

dr&&(r’) 

x exp{S@’ - 0) - ;(w - kzvz)r} 

2rrr d$ s s ’ 
,l,e(r,p,,pz) = i(w - bv,) - 

0 27r -cm 
dr&(r’) 

x exp(ie(8’ - 0) - ;(w - &v,)r} 

l For step-function density profiles, a class of solu- 
tions is permitted in which 

in the beam interior (0 < r < rb). Here, $$ and & 
are constant amplitudes: 
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Dispersion Relation for Step-Function 
Density Profiles 

l We make use of 

(5’ + iy’)l = rte exp(ie0’) 

to express 

&,p~,p,) = i(w - kzvz)& exp(-ilo) 

s 

0 
X dr exp{-;(w - kzvz)r} 

* -m 

l Integrating over q5 and r gives (exactly) 

1 
I&,Pl, Pz> = -3 

l! 
m!(l - m)! 

(w - kzzfz) 
X 

W - kzVz - (t - 2m)i$@+) 

for the beam ions, where vz = p/‘ybmb, and 

1 e 
I,e(TPl, Pz) = -2 c 

m=O 
( w - kzvz) 

X 

t ! 
m!(l - m)! 

[W - kzVz - (.f? - 2??2)6,] hw-) 

for the background eiectrons, where vz = pz/me. 
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Dispersion Relation for Step-Function 
Density Profiles 

l Some straightforward algebra gives for the per- 
turbed charge densities 

-4re 
s 

d3pSf& p) = -~r~(w)@(r)-b(r - rb) 
e rb 

+ Here, the ion and electron response functions (j = 
b, e) are defined by 

@ - 2m)&Gj(pz) 
[(w - kzVz) - (l? - 2572)Cj] 

for general azimuthal mode number &. 
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Dispersion Relation for Step-Function 
Density Profiles 

l The coupled equations for the eigenfunction am- 
plitudes 6@‘(r) and iV$e(r) then become 

( ld d e* -- 
r dr r 6% 

- - -p 
> 

t$Y(r) 

- > - 1 
X Is(r - rb) 

rb 
and 

( 

ld d e* -- --- 
r dr r dr r* > 

W(r) 

-2 
- c”‘pb e - T$b(w)6de(r) + 

I 

X b(r - rb) 
rb 
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Dispersion Relation for Step-Function 
Density Profiles 

The equations for @l(r) and &$e(,) can be solved 
exact/y in the beam interior (0 5 r < Q), and in 
the vacuum region (rb < r 5 r,). 

These equations can also be integrated across 
the beam surface at r = rb, thereby relating the 
discontinuities in (d/&-)@‘(r) and (a/&--)&@‘(r) 
self-consistently to the perturbed surface-charge 
and surface-current densities. 
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Dispersion Relation for Step-Function 
Density Profiles 

We enforce continuity of 6$‘(r) and 6Ge(r) at the 
beam surface (r = rb), and set S$“(r = r,) = 0 = 
S$Y(r = r,). Some straightforward algebra gives 

2 

l - (?-b/T,)*’ 
+ 

I 

Dispersion relation is valid for: 

- Step-function density profiles n:(r) and n:(r). 

- Arbitrary normalized beam intensity (G$/w&,). 

- Arbitrary fractional charge neutralization f. 

- Arbitrary azimuthal harmonic number &. 

- Incorporates effects of axial momentum spread. 

System is fully stable in the absence of back- 
ground electrons (f = 0). 
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Ion and Electron Response Functions 

l For purpose of illustration, take G&,) (j = b,e) 

to be the resonance function 

Gj(Pz) = 
4 

d(Pz - rjWLjVj)* + AT]’ 

where Aj = const. is the characteristic axial mo- 
mentum spread, Vj = Vb for the beam ions, and 
vj = v, = 0 for the background electrons. 

l ‘The ion and dectron response functions are then 
given by 

X 

rb(w) = -$ & ‘! 
m=O m!(t - m)! 

(t - 2m)i& 

K W - k&‘$b + +&)‘Qz) - (e - 2m)cbl 

r,(w) = --$ & ‘! 
m=O m!(& - m)! 

x 
(l - 2WL)Ce 

[(W + ijkzIVTez) - (e - 2m)%]’ 

where VT& = &,/~@??,b and ‘UT,, = Ae/me are the 
axial thermal speeds. 
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Dispersion Relation for Step-Function Density 
Profiles 

l The contributions proportional illC,lVTj, in the iOn 
and electron response functions rg<w) correspond 
to Landau damping effects produced by longitu- 
dinal momentum spread. 

l When two-stream instability occurs, the strongest 
instability (largest growth rate Imw) occurs for 
azimuthal mode number t = 1, corresponding to 
a simple (dipo_le) transverse displacement of the 
beam ions and background electrons. 
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Kinetic Dispersion Relation for Dipole Mode 

l The exact kinetic dispersion relation for! = 1 can 
be expressed as 

2 ‘;b/r,’ 
1 - r,‘frz - (w - kzvb + ~~~&T,zb)* - cf I 

2 -2 

X wPe 

1 - ?-f/r; - (W + ilkzI’L’T,e)* - 6: 1 
-2 -2 

c - -wpe wPb - 
[(W + iIkz(VTze)* - 6,2] [(W - k.~Vb + ilhzIVTzb)* - cfl 

l Here, we express 

-2 
wpe = 

?‘bmb -2 
Zbme 

f wPb 

where G$ = &r@&fe*/ybmb is the ion plasma frequency- 
squared, and f = ‘%e/Zbfib is the fractional charge 
neutralization by the background electrons. 
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Kinetic Dispersion Relation for Dipole Mode 

l Kinetic dispersion ‘relation for & = 1 can be ex- 
pressed exact/y in the compact form 

[(W-k,Vb~ilIc,lvT,b)*-wb2][(w+~I~,lvT,,)*-w~] = W; 

l Here, the coupling frequency wf, and the ion and 
electron collective oscillation frequencies, Wb and 
we, are defined by 

, 

2 
?‘bmb -4 

Zbme 
wpb 

and 

,2 = -2 IA2 
e- v, +-w 

2 pe 

l Two-stream instability is strongest in limit of small 
axial momentum spreads 

W I I - - vb >> VTzb, 
kz 
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Dipole-Mode Two-Stream Instability for vTzj = 0 

l setting VTzj = 0, for small values of f (and there- 
fore w;), the kinetic dispersion relation supports 
four solutions with frequencies w-k&$ E I&b and 
W !2 *We. 

l For f fr 0, one of these solutions is unstable 
(Imw > 0). The unstable branch has real fre- 
quency and wavenumber (wJ&) closely tuned to 
(~0, !I& defined by 

WO - &-Ovb = -wb 

l Expressing w = wo + 6~ and k, = /C,O + 6k,, the 
quartic dispersion relation can be approximated 
by the quadratic form 

Sw(Sw - &&vb) = - 
4wewb 

where 16~1 << 2We and j&w - vb&I << 2wb are as- 
sumed. 
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Dipole-Mode Two-Stream Instability for 'UTzj = 0 

l Solving the (approximate) quadratic dispersion 
relation gives 

ImSw = ro[l - (&kzvb/2rO)2]1’2 

for the unstable branch with ImSw > 0. 

l validity of thi3 result requires 

which is readily satisfied for 0 < f < 1 and - - 

l For ?-w/?-b + 00, the maximum growth rate (Im&w),,, = 
l-0 is given by 

(ImW,,, 1 f 1’2(YbmblZbme)“4(~~b/w~b)3’4 
- 

wnb 
-27/4 [l+ (f/2&$/w;(,11'4 
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Dipole-Mode Two-Stream Instability for 'UTzj = 0 

0 

0 

For the case of step-function density profiles: 

- Growth rate increases with increasing beam 
intensity (&$) and increasing fractional charge 
neutralization (f). 

- Growth rate decreases with increasing wall prox- 
imity (larger ?-b/r,). 

Growth rate can be substantial for high-intensity 
proton linacs-and storage rings. For example, 
for a proton beam with & = 1, mb/me = 1836, 
-fb = 1.85, &$,/‘$b = 0.1, and f = 0.1, We find 

(Im6w)maz = 0.127wpb 

Rew.E wg = 13.03wpb 

kz% = kzOvb = 14.03wpb 
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Dipole-Mode Two-Stream Instability for VTzj = 0 

0 

0 

. 

For the ion beam parameters of interest for heavy 
ion fusion, the transverse beam emittance is small 
(small Tlb), and the beam intensity is close to the 
space charge limit 

At such high beam intensities, a cubic or full quar- 
tic approximation to the dispersion relation must 
be solved. For a heavy ion beam with A = 133 
and zb = 1, kinetic energy (‘yb-l)m@* = 10 GeV, 
ratio of beam radius to wall radius rb/rw = 0.5, 
and fractional charge neutralization f = 0.1, we 
obtain the maximum growth rate 

(Imw)max = 2.04wBb 
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Effects of a Spread in Axial Momentum 

l Incorporating an axial momentum spread, the ki- 
netic dispersion relation for dipole-mode pertur- 
bations (I = 1) is given by 

where 
2 

Ybmb -4 

Zbme 
wpb 

l Numerical analysis of this dispersion relation shows 
that a modest axial momentum spread can sta- 
bilize the dipole-mode two-stream instability at 
moderate values of beam intensity and fractional 
charge neutralization. 
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Effects of a Spread in Transverse Betatron 
Frequencies for VT~~ = 0 

l Assume (weak) parabolic variation in radial den- 
sity profiles with 

rqr) = 

0, 7-b < r -C rw - 

where c << 1. 

l Adopt a model that makes the susceptibility re- 
placements 

-2 
wPe 2 

s 

‘b drrw,(r) 

w2 - 3 e + 2 0 w2 -u:(r) 

rb drrw$(r) 
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Effects of a Spread in Transverse Betatron 
Frequencies for VTzj = 0 

l For 6 << 1 and & = 1, dispersion relation becomes 

[(W-k,Vj)2-W~+AWf][W2-W,2+AW~]=Wf4( l--ECYe)(l--E&b) , 

where AWN and AWN are proportional to c and 
related to the spreads in betatron frequencies. 

l Threshold condition for the onset of instability is 

l As a simple example, for inhomogeneity parame- 
ter E = 0.075, and protons with yb = 1.85, & = 1 
and mbfm, = 1836, the threshold condition be- 
comes 
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Conclusions 

Using a fully kinetic model based on the Vlasov- 
Maxwell equation, we have derived the dispersion 
relation for the two-stream instability for a high- 
intensity ion beam propagating through a popu- 
lation of background electrons. 

The electron-ion two-stream instability is strongest 
(largest growth rate) for dipole-mode perturba- 
tions with azimuthal mode number I = 1. 

In the unstable regime, the two-stream instability 
growth rate is found to increase with increasing 
beam intensity, and increasing fractional charge 
neutralization. 

Effects that reduce the growth rate of the two- 
stream instability include: 

- Proximity of a conducting wall. 

- Axial momentum spread. 

- Spread in (depressed) transverse betatron fre- 
quencies. 
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Future Analytical and Numerical Studies of the 
Two-Stream Instability 

l Determine mode structure for collective ion beam 
oscillations in the absence of electrons. Deter- 
mine dependence on: 

- Beam intensity 

- Ion density profile shape 

- Spread in 
quency 

> 
- Choice of 

(depressed) transverse betatron fre- 

input ion distribution function f,“(r, p) 

l Determine properties of two-stream instability in 
presence of a small population of electrons at 
moderate ion beam intensity. Determine depen- 
dence of instability properties on: 

- Electron density profile shape 

- Spread in transverse electron betatron frequency 

- Ion beam intensity 

- Choice of input electron distribution function 
f,“(T, P> 
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Future Analytical and Numerical Studies of the 
Two-Stream Instability 

l Determine threshold properties of the e-p insta- 
bility as a function of: 

- Beam intensity 

- Fractional charge neutralization 

- Choices of input distributions ft(r,p) and f:(r,p) 

- Axial momentum spread 
, 

l Determine illistrative operating regimes for PSR 
and SNS that minimize the deleterious effects 
of the two-stream instability and maximize the 
threshold beam intensity for onset of the two- 
stream instability. 
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