4th Generation Light Source Alignment Issues

Stephen Milton

Argonne National Laboratory, Advanced Photon Source

- OUTLINE
 - Synchrotron Radiation Historical Background
 - 4th Generation Description
 - FEL Operation Requirements
 - Methods of Measurement
 - Alignment Requirements

ALIGNMENT TOLERANCE vs. WAVELENGTH

'Year

Alignment Technique

- A PILOT'S PERSPECTIVE
 - Dead Reckoning
 - + This is what the alignment/survey team provides.
 - + Needs to be good enough for the diagnostics to work.
 - Navigational Aids
 - + Beam and photon diagnostics
 - Pilotage (Beamage?)
 - + Feedback systems

Progression of X-Ray Sources

• The Big Step Beyond X-Ray Tubes

Synchrotron Radiation

- Further Improvements in Synchrotron Radiation
 - 1) Magnet Technology
 - Wiggler/Undulator Magnets
 - Permanent Magnet Materials
 - Superconducting Magnets
 - 2) Particle Beam Quality and Control
 - Lower Emittance
 - Lower Energy Spread
 - Higher Average Current
 - Higher Peak Current
 - High Resolution and Precision Diagnostics
 - Feedback Systems
 - 3) Coherence ·
 - Free Electron Lasers (FEL)

Storage Ring vs. Linac Comparison

$$\lambda_{\underline{L}} - \frac{\lambda^*_{W}}{2\gamma^2} = \frac{\lambda_{W}}{2\gamma^2} \left(1 + \frac{k^2}{2}\right)$$

Emittance Scaling

Storage Ring

Linac

$$\epsilon \alpha \frac{1}{\gamma}$$

$$\lambda_{\rm L} > \lambda_{\rm diff} \equiv \frac{4\pi\epsilon}{R}$$

POSSIBLE FOURTH-GENERATION SYNCHROTRON FACILITY USING SELF-AMPLIFIED SPONTANEOUS EMISSION (SASE) FELS

Peak Spectral Brightness [Photons•s⁻¹•mm⁻²•mr⁻²(0.1% Bandwidth)⁻¹]

Parameters of the Short-Wavelength SASE FEL

Parameter	SLAC	DESY	ANL	BNL
Wavelength, nm	.15 - 4	6.4 - 72	120	1000
Electron Energy , <i>Ge V</i>	15 - 7	13	.4	.23
Normalized Emittance , π mm·mrad	1 - 3.5	2	5	6
Energy Spread, %	.02	.12	.1	,1
Peak Current, kA	5 - 2.5	2.55	.15	.15
Undulator Period, mm	30 - 83	27.3	27	38.9
Magnetic Field, T	1.3 76	,5	12.	. 56
Undulator Gap, mm	6	12	5	14.4
Focusing	FDFD	FODO	Separated Quadrupoles	FOFO
Gain Length, <i>m</i>	6 - 2.5	1.16	15,	.67
Undulator Length, m	100 - 40	6 .4.8 - <u>3</u> .4.8	15.2.5	10

Low Energy Undulator Test Line System Layout

Parameters		Units
¿Electron beam energy	14.35	GeV
Emittance	1.5	🛪 mm mrad, rms 🕻
Peak current	3,400	A
Energy spread (uncorrelated)	0.02	%, rms
{ Energy spread (correlated)	0.10	%, rms {
& Bunch length	100	fsec, rms
Undulator period	3	CI
Number of undulator periods	3,330	
Undulator length	100	<u>m</u>
Undulator field	1.32	Tesla
Undulator gap	6	mm
Undulator parameter, K	37	
FEL parameter, p	4'.7 10-4	
Gain length	11 .	m
Repetition rate	120	HZ
Saturation peak power	10	GW
Peak brightness	5.5.10 ³² -5.5.10 ³³	Photons/($s mm^2 mrad^2 0.3\%$ BW)
Average brightness	5.5.10 ²¹ -5.5.10 ²²	Photons/(s mm ² mrad ² 0.1% BW)

Fig. 2 shows the peak and average brightness **as** a function of **photon energy**

Figure 2: Average and peak brightness calculated for the **LCLS**, other planned FEL facilities **and those** obtained in some operating facilities.

The curves for the presently operating 3rd generation facilities indicate that the projected peak brightness of the LCLS would be about 8 orders of magnitude greater than currently achieved. Fig 3 shows the-build up of the FEL radiation along the undulator length, computed with the code "GIN-GER"". The power saturates, and reaches its maximum output value, at about 80 m along the undulator. A set of simulations takes into account the effect of magnetic imperfections.¹² This is

Free Electron Laser in the Self Amplified Spontaneous Emission (SASE) mode

- SASE PARAMETERIZATION
 - The Pierce Parameter

$$\rho \propto \left[\frac{I_{peak}K^2\lambda_w^2}{\sigma_{trans}^2\gamma^3}\right]^{1/3} = \left[\frac{I_{peak}}{\sigma_{trans}^2}\frac{\lambda^2\gamma K^2}{\left(1+K^2/2\right)^2}\right]^{1/3}$$

- The Gain Length $L_{gain} = \frac{1}{1+\eta} L_{gain}^{1-D} = \frac{1}{1+\eta} \frac{\lambda_w}{4\pi\sqrt{3}\rho}$
- Efficient Operation

$$\frac{4\pi\varepsilon}{\boldsymbol{a}_{light}} \leq 1 \quad \frac{L_{gain}}{L_R} \leq 1 \quad \frac{b\ y}{\gamma} \leq \rho$$

- Quickly Summing Up

Make ρ as large as possible without violating conditions for efficient operation.

Length and Time Scales

- Length **Scales**
 - Transverse
 - + Beam size i.e. beam emittance
 - + Photon wavelength i.e. diffraction effects
 - Longitudinal
 - + Interaction length i.e. the gain length
 - + Phase errors
- TIME SCALE
 - DC Shifts
 - + Discreteness of the beam diagnostics
 - Slowly varying
 - + Averaging techniques
 - Shot-to-Shot
 - + Vibrations
 - + A real problem

Conditions for Ignition Conditions for Usable Light

- ALIGNMENT RELATED
 - Overlap Condition
 - Keep e- beam overlapped with the photon beam to within 10% of the e- beam rms size over a distance of at least 3 gain lengths.
 - + To be done with e- and photon beam **position** monitors (as yet to be constructed).
 - Phase Coherence
 - + Keep e- beam "wiggle" phase properly aligned with the coherent photon beam phase.
 - + Longitudinal alignment

Dead Reckoning

.

- TRAJECTORY AMBIGUITY
 - Finite number of beam position monitors

Dead Reckoning

• SOME NUMBERS (LEUTL ONLY)

- Transverse
 - + Undulator vertical: 100 μm over 5 m

.

- + Quadrupoles: 100 μm over 5 m
- + Beam Position Monitors: 50 μm over 5 m
- Longitudinal (Phase to within 5° over the entire length)
 - + Undulator Cell-to-Cell: 30 μm over 5 m

• SO WHY THE WORRY?