
Data Archiving in Experimental Physics

Leo R. Dalesio, William Watson III and Matthew Bickley (Jefferson Laboratory),
Matthias Clausen (Deutches Elektronen Synchroton)

LANSCE 8, MS H820
Los Alamos National Laboratory

Los Alamos, New Mexico USA 87544

Abstract

 In experimental physics, data is archived from a wide
variety of sources and used for a wide variety of purposes.
In each of these environments, trade-offs are made between
data storage rate, data availability, and retrieval rate. This
paper presents archive alternatives in EPICS, the overall
archiver design and details on the data collection and
retrieval requirements, performance studies, design
choices, design alternatives, and measurements made on
the beta version of the archiver.

1 Introduction

 When designing a new archive facility for data archiving
for the Experimental Physics and Industrial Control System
(EPICS), a collaborative team was formed from Jefferson
Laboratory (JLAB) and Los Alamos National Laboratory
(LANL). The requirements were collected, the work was
divided among collaborating institutions, and an
incremental completion plan was made. As a preliminary
step for the data collection and retrieval portion of the
project, some performance studies were done to investigate
alternative design options.

2 Requirements

 Requirements were gathered from JLAB, LANL,
Stanford Linear Accelerator Center (SLAC), and Argonne
National Laboratory (ANL) for a variety of projects.
Archiving at multiple workstations with the ability to
archive the same channel in multiple archives. Data must
be saved as single channels with varying rates and as sets
where many channels are taken at a single point in time.
Archive data must be available to distributed data viewers,
data management, and data analysis packages, anywhere on
the network. These requirements led to the design of a
distributed data archiver that collects all data types and
arrays (one-dimensional) of all data types from any I/O
Controller (IOC) in the control network.
 The requirements that affect the design of the archive
file structure are data storage rate, data retrieval rate, and
latency between archiving and using archive data. For long
term storage of system parameters, SLAC requires 1,000
channels every 3 minutes; Jefferson Lab requires 6,000
channels every 10 seconds; and LANSCE requires 15,000
channels every minute. To support analysis of accelerator
transient events, we need to save data on change at 5,000
channels per second and have the ability to trigger data

buffers with before event and after event data (like a
hardware scope). Channel data is wanted for data analysis
and trending plots of channels through time. The trending
plots of channels through time is the most demanding in
that the last day′s worth of data containing up to 1,000
samples are required to be displayed within one second per
channel. We are allotting 200 msec of this time for retrieval
and 800 msec for display. In addition, 1,000 samples from
the last 30 days must be displayed within 4 seconds per
channel. We are allotting 3 seconds of this time for
retrieval. Requirements were given to view data within a
minute of data taking. With these goals in mind, we
reviewed the existing archive facilities in EPICS.

3 Alternatives existing in EPICS

 Several archiving solutions are already available in the
EPICS toolkit. They were developed with different aspects
of data archiving in mind. Alternative archiving methods
include: ARR from LANL, a relational database solution
that was done at Tate Integrated Systems (TIS), an IOC
based archiver done by Kinetic Systems Corporation
(KSC) and a distributed archiver and viewer done at
Deutches Elektronen Synchrotronen (DESY).
 The archiver that is distributed with EPICS was designed
for archiving commissioning data for a linear accelerator. It
handled five thousand event changes per second. The file
size is defined at invocation and is not able to expand past
this allocation. The user interface has been found to be
difficult to use and the lacks feedback during data taking.
As a result of the lack of positive feedback on data
collection, several commissioning runs were without data
although they believed it was being collected.
 The KSC solution was designed for short term, high
volume data in the industrial data acquisition market. It
archives up to fifteen megabytes of data per second. The
data is archived onto mass storage in the IOC under
vxWorks. The data is only available for viewing and
analysis after the experiment is complete.
 The TIS solution uses relational database technology.
There is support for Dbase and ORACLE. The solution was
designed for low volume data that will be kept for many
years. Access to/from DBASE on a SPARC 5 was
measured at 200 records per second, where each record can
contain up to 255 values. On ORACLE, the performance
on a SPARC 20 was measured at 50 records per second.
The latency between data taking and data viewing gets long
with large, high rate channel counts.
 At DESY, the archiver was designed to keep facility
information and make it available in a multi-control system

environment using CORBA and IDL. In this design, each
channel is stored in a separate file. This makes access time
within a channel very fast. Data storage for a high channel
count will slow archiving by requiring many files to be
opened and closed. The file access issue is mitigated using
front end buffering and flushing the buffers when needed.
 Each of these solutions has been operational and
successful. However, the full ranges of requirements were
not met by any of them. Finally, we decided to design an
alternative archiving facility.

4 Archiver design

 The collaborative team from JLAB and LANL
developed a preliminary design to meet the requirements.
(Figure 1) The initial release will use the channel access
protocol to collect data. There are two data collection
engines included: one for collecting sets of data at a given
point in time and a channel archiver for collecting
individual channels at independent rates. The data retriever
is initially connected directly to a set of data management
routines, and has a set of routines available for use by data
analysis packages and data viewers. There are two data
viewers currently under development in UNIX and JAVA.

This paper will primarily focus on the channel-based
archiver and retriever.

5 Data storage techniques

 Optimization for data storage and retrieval is
accomplished using several mechanisms. Data buffering is
used to optimize storage rates. When the buffering is done
in the front end computers, it optimizes network
transmission and client side CPU utilization by minimizing
the number of packets that are sent over the network and
handled by the client. It also offers a backup storage when
the archiving machines or the network are unavailable. The
buffering increases the latency for data availability,
however.
 Using a streaming write on the client side optimizes disk
access by removing any need to seek to an area before
storing the data. This approach optimizes writing time, but

introduces delays on retrieval time by requiring the
retrieval routines to follow backward links to pick up a
multitude of data chunks. Scrolling forward in time would
be most severely impacted using this method. Creating and
maintaining data areas for each channel, limits the number
of file operations for data retrieval, but puts a burden on the
data storage side to incrementally fill these areas by
seeking and writing the next partial set of samples. It
becomes clear that there is a large range of possibilities for
optimizing either storage or retrieval. The optimization of
one – tends to affect the performance of the other. To
decide on an approach, the requirements were reviewed
and some performance tests were made.

6 Performance of file operations

 A study was done changing the amount of data, the
buffer size, the number of writes, the number of seeks and
the number of file opens/closes. (Table 1)

Cha
nnel
s

Di
sk
Wr
ite
s

B
y
t
e
s

See
ks

O
p
e
n
s

S
ec
o
n
ds

B
yt
es
/S
ec

1,000 100 1K 100K 1 198.1 505K
1,000 100 100 100K 1 19.6 510K
1,000 10 100 10K 1 1.2 833K
100 100 100 10K 1 1.2 833K
10 1,000 100 10K 1 1.3 769K
10 1,000 100 10K 1K 56.5 17K
10 1,000 100 100K 10K 454 2K

 The table shows that opening and closing file descriptors
on each operation results in a 90% reduction in
performance. File open/close needs to be minimized. File
seeks reduce the performance by about 40%. If we seek
during storage, to group data into one area in the file then
we reduce the seeks required to fetch it. If we stream data
to disk then we require more seeks when the data is
retrieved.

7 Adopted file structure

 The file structure chosen attempts to balance the
requirements for retrieving data against the storage rate.
(Figure 2) To minimize the search time for a given channel,
a directory is kept containing all channels that have been
archived. A hash table is used to minimize the seek time.
The entries contain pointers to the most recent and oldest
data collected. Each data file contains a single area for each
channel for the time period encompassed by the file. If
each file contains 4 hours of time, then there is one area on
the file for 4 hours of data for each channel included in the
file. Each of these data areas contains a header with the
first time, last time, number of samples, and pointers to the
next and previous time periods. For channels that do not
change in a given time period, no file space will be used.
Using one file per time period minimizes the number of file
opens/closes. Keeping a single file descriptor for a new file
when the next time period occurs incurs only one
additional file open. Fetching the data from the most recent

Channel Access

Channel Access Client Library

Channel Archiver Save Set Archiver

Channel Retriever Save Set Retriever

CDEV Service Library

Archive Record Any Field

Time/Data ViewerData Management Data Analysis

time requires only two file opens, one for the directory and
one for the data file. Seeking for an arbitrary point in time
will require one file open per time period, with one file
seek and one read of the data header.

8 Configuration parameters provided

 Configuration parameters are provided to optimize

conditions for different requirements. The configuration
parameters include data buffer rate, data flush to disk rate,
time period per file, and channel access monitor threshold.
 The data buffer rate is the maximum frequency that a
channel is saved. The data is placed into a circular buffer in
the client side at this rate. The rate is specified as a default
rate in floating point seconds and supports a different rate
on each channel.
 The rate that the data is flushed to disk is an archiver
wide parameter. It is the rate that the channel archiver will
write data to disk. The buffers are allocated to hold twice as
much data as is collected in the write frequency. This rate
determines the latency between data taking and the use of
data by the archive data viewers or analysis packages.
 The time period per file determines the size of each file.
The longer the time period per file, the larger the file. The
more files that are created, the more file operations that are
required to retrieve data.
 The channel access monitor threshold is used to
determine when the archiver will use channel access
“monitors” and when it will use channel access “gets”. If a
channel is changing at a much higher rate than the data
buffer rate, there is a waste of network bandwidth and CPU
cycles on the client side for processing events that are
overwritten before they are archived. Using channel access
“gets” to archive channels at a higher rate than they
change, wastes resources as above by fetching and storing

data that is not different. It is best to use channel access
“gets” when a channel is changing at a higher rate than it is
archived. It is most efficient to use “monitors” when a
value changes at a rate that is less than or equal to the
archive rate. The channel access monitor threshold is
currently specified for an instance of the archiver.

9 future plans

 In the near future, a standard set of retrieval routines is
to be defined. With this standard library, we should be able
to have access to all archive data with any viewers or data
analysis packages. In addition, the use of the DESY archive
buffering techniques will be integrated to allow data
backup when an archiver is not active and higher
bandwidth through front end filtering and buffering. More
performance tests need to be done to characterize the
bottlenecks and degraded modes of operation. Further
optimization is expected.

10 Conclusions

 The channel archiver is currently running at four
collaborating laboratories. On a SPARC 10 we have
measured 1,000 channels scanned in the IOC and changing
at 2 Hz, sending 2,000 monitors per second to the archive
client. Each entry includes an 8-byte time stamp and 4
bytes of status. The values are buffered and written to disk
every 30 seconds. This was run for 3 hours archiving 432-
megabytes of data, timestamps, and status with no data
loss. CPU utilization on the SPARC 10 was measured at an
average of 20%. Retrieval of 1,000 points from a single file
was completed in under 200 msec. Retrieval of 1,000
readings from 30 files was done in under 800 msec. Further
test are required to determine if the 5,000 channel per
second archive rate will be met on a SPARC 10 class
machine. A beta release is available for all code except
that in Italics.

Acknowledgements:

This work is part of an extensive effort being put forward
by Jefferson Laboratory and Los Alamos National
Laboratory. Requirements and initial design work was done
by a group from Jefferson Lab, SLAC, ANL, LANL and
DESY. Stephanie Allison, Janet Anderson and Marty
Kraimer made significant contributions during the initial
phase of this project.

Fil e Structure Com promise

Figure 2

First file

Last fi le
First offset

Last offset

Last Time
First Time

Directory

P rev file

Next file
Prev offset

Next offset

Last Tim e

First Time

Data File 0

Chan 0

Samples

Data

Chan 1

Chan 0

Chan 1

¡ ­¡ ­...

P rev file

Next file
Prev offset

Next offset

Last Time
First Time

D a t a File N

Chan 0

Samples

Data

Chan 1

H ash Index

Collision Ptr

