Integration of a Relational Database in the CERN PS Control System

J.H. Cuperus, M. Lelaizant,
CERN, 1211 Geneve 23, Switzerland

Abstract

The control system for the CERN 26 Gev Proton
Synchrotron and its injectors is a generic system which can
be adapted to other accelerators. Most configuration data
are in a relationa database. From these data we can
generate object interfaces for equipment, configuration
files for front-end computers, a read-only database for
accelerator control interfacing, and full dynamic
documentation on the Web. The database is also used in
real time for runtime references and archives, and for the
working data of several programs.

1 Introduction

The control system for the CERN PS accelerator
complex (7 accelerators, not including SPS and LEP), is a
generic system which can be adapted to other accelerators.
It must steer the beams through the interconnected
accelerators with up to 5 particle types accelerated in
cycles grouped in a supercycle. This means that
thousands of parameters must be changed each cycle of
about 1.2 seconds. Some help from a database is required.

2 The database

2.1 History of the database

The development started in 1980 when a file system
database made by us on a NORD computer was used
to support a data-driven alarm system. The data expanded
to cover other subsystems and, in 1986, the data were
moved to a OracleV5 database system on a central
mainframe. In 1991 they moved again to a local server,
dedicated to accelerator control.

2.2 The database server

The relational database management system (RDBMYS)
is Oracle-V7.3, running on an IBM RS/6000 server with
256 MB of memory and 3 hard disks of 2.2 GB each.
Operation is continuous with on-line backup during the
night. In case of hardware malfunction, we can quickly
switch to a backup machine without loss of data, but there
has been no need for this in 6 years of operation on
two different servers. The mean load of the database is low
so that almost all requests can be serviced quickly.

2.3 Data structure

The hardware and software is described with about 100
core tables managed by the database section. Of these, 60
describe software classes or hardware types and the rest
stores the attributes for the instances of these types.

An example of a hardware type description is table
MODULETYPES, which lists the fixed attributes of

VME, CAMAC, G64, and other module types. Some
atributes, such as default VME base addresses and
interrupts, are only filled in when relevant.

An example of an instance description is table
MODULES which lists the location, function, addresses,
and exceptions of individual modules.

When the number of attributes is too large, or when the
list of attributes varies too much from class to class, we fall
back on a dtructure like: INSTVAL = {CLASS +
MEMBERNO + VARNAME + VALUE} which contains
values for al the static (read-only) attributes which are
defined in the class. These values can be of any type, even
array, but are stored as strings.

2.4 Data input

[El I
‘ Action Edit Block Fleld Record Query Help

Exi CRATES B <<| < | > [>>|nB[NewRec| DupRec| DupFid | DelRec | Commit RolBack] Query | List | Help

crate Label: [GGPSCTO

Dsename: [depacin

Slot Moduletype
1| [SAC

unT | Mastertype Lun ADR Remarks Special Driver Params Mod_id

[Remote reset + VME bus tests 2218

z | |MVMETs7
a | TGa
5 | [Tae

cPU 2220
PLS recelver 2248

L
o
0
0
i (Open GAP relays 2221
6 | [1G8 2 Close GAP relays 22z
7 | [TGe 3 [Event start Vimod 2228
REES 0 Pover system 2223

0

i

2

3

0

i

z

0

13| |GFAS Volt. RF global j2zza

14 |GFAS
15 | |GFAS
5| |GFAS
18 |0 [VMOD=TTL
18 |1 [VMOD-TTL

Vimod 1-6 2225
Vimod 1-6 2222

EEEE

Vinod 1-6 2226
Matrix control (outp) 2227
Matrix acquisition (inp) 2301
Spare cavity selection (outp) 2431
£

=EEEEE

18 |2 [VMOD-TTL
18 | |VMODIO

Num Subaddress

2 [PRWCY-MTG &}
3 PXWCY-MTG

4 PKSTC-MTG

5 PKSEI-MTG ¥

Figl: An example of adatainput screen

Connector signal

Module type identfier (lst available)
(Count: *15 <List><nsert>

Input of static data is mainly through interactive forms
(Fig.1), grouped in menu structures per application. The
forms are generated with the help of our templates on
top of the Oracle 4.5 Forms.

Some bulk loading from external data sources such as
data files, spreadsheets, or other databases is also done
and, occasionally, the data manager can transform the data
with SQL database language statements or with
scripts. Dynamic on-line data, such as accelerator settings,
measurements, and user actions, are mainly written to the
database by C procedures with embedded SQL .

And some of the data migrated over 17 years through 5
platform changes.

2.5 The real-time database DBRT

A subset of the data in the RDB can be downloaded in a
simple real-time database called DBRT, which is based on
NDBM, a commercia UNIX hash table system. This has
the following advantages :

Each accelerator can have its own copy which makes
the system |ess dependent on the central database.
Access is through procedure calls and the application
programmer does not need a SQL precompiler.
Accesstime is better guaranteed.

Complex derived objects can be constructed off-line.
DBRT shows a consistent snapshot of the data at the
moment it was generated.

A variant of DBRT is now experimentally used for
initialising Java objects through UDP network calls. This
may later be replaced by a direct RDB connection through

JDOBC (Java Database Connectivity) or through
embedded SQL in Java..
2.6 Dynamic web documentation
E| Al
File Edit “iew Go Communicator Help ‘

bl bl

Description of DSC dlilpowe

Comptype: DSC Description: LIL power supplies and MTV

Cratelahel: DLILPOWC | Action Log

Telegram : LPI Concentrator : d®pshl Building : 2002
Directory : lpi Concent-Port : 2002 Room : R-002

DigioMhbno : 8001 Server: psas07 Rack : RA110

Resetval : 2 Server-Port : 10082 Tel :

Hardware Crates

Click en CrateType for a description of crate and meodules

Function

VME crate

Lil power suppliss
Lil power supplies
Ecrans 1il & spa

Lp/Cr Build/Roon Rack
0/0 2002/R-002 RAll0
CAMAD 1/11 2002/R-002 RA109
CAMAD 1/13 2002/R-002 RA109
CHMAL 1/15 2002/R-002 RA107

Click on Startup—Name for description of program

Seq Startup-Name Prio Inhib Clic Parameters
1

I0CONFTGTNSTALL - -

2 ERRLOGD 13 - T §l=lpisrv
3 SYSREPORTER a0 - - #1=lpisrv
4 GET TGM WVME 100 - T $1=LPI

10 IDCONFIGDIAG 12 - ¥

20 DTEEST - -

100 POWRTM s - T

998 SERVER o - T

099 CLIC 11 - =

Equipment

Click en ClassName for a description of the class, or on EquipCeount for a list of equipment.

ClassName EquipComnt Description

DSCRM 1 General info for DSCs

& Screens control

] POW controls power supplies, see PS/C0/Note 90-05
Global actions on Camac Crate

EM for controlling stepping motors

{machine-nb, tgm-used. .}

e

-
H
&
Hw

PS/CO Home] [Eqgm Interface Home!
Tl [o0%

‘Dncumem Dane i b 2R 2 ”

Fig.2: An example of dynamic documentation on the Web

A Web page can reference a script in the server directory
cgi-bin which calls procedures in the database
programming language PL/SQL. These procedures, stored
in the Oracle database, construct dynamic pages (Fig.2)
according to the parameters with which they are called.
These pages are typicaly also full of links which refer
to other dynamic pages and so on. At present, 113
procedures can generate tens of thousands of different
pages in 113 formats. They cover the whole control system,

including the structure and status of the database.

3 Application

The most important applications are described below.
Support for these applications goes from maor
responsibility for the database section (2 persons) to merely
providing the database environment.

3.1 Object oriented equipment interface

Access to the accelerator equipment is with Control
Modules, which are seen by the application programmers
through a uniform object oriented interface [1].

A piece of equipment is identified by its name or,
dternatively, by its class name and member number.
About 100 classes are defined in the database in a
hierarchical structure with inheritance. All instance
read-only data (constants) are also defined in the database.

9 class and 2 Data Structure and
instance descript- —»{ Method Template
ion tables Generation Program
Control Initialised Templates
Module Data Method
Frame Structures Library

| C-Compiler |

v

Fully initialised Control Modules installed on
one of more than 100 front-end computers

Fig3: Control Module generation

When the data are filled in (and the method library
updated), a set of classes can be automatically compiled
and installed in one of the 100 front-end computers
(called Device Stub Controllers or DSC) each sitting in a
VME crate (Fig.3).

3.2 Automatic front-end computer configuration

From information about VME and other crates and
modules, equipment, and programs, a file named rc.local is
generated for each DSC (Fig.4). This file contains all
information for starting up and initialising the drivers
and other programs which are specific
to this DSC, in the proper order and with the right
priority and arguments. The file contains also comments
which describe the configuration of the DSC and are
readable by a maintenance program [2].

3.3 Alarm system

Any control module (CM) class can inherit variables and
methods from the ALARMS class, on top of its normal
inheritance. This inheritance includes the generic method
ALARM which depends for its execution on control and

5 type description tables for computers, crates,
modules, drivers, and programs.

7 instance description tables for installation,
exceptions, and parameters.

!

| I nitialisation-file Generation Program |

!

| DSC Initialisation-file rc.local |

Fig.4: Generation of rc.local initialisation files

status word descriptions in its class and instance variables.
These values are derived from the database [3].

An active scan program acquires a list of equipment and
periodically scans the corresponding CM with the method
ALARM which responds with an alarm code (Fig.5).

The display program can display the corresponding
alarm messages and give details on request.

Red-Time 7 type All control

Database [« description —» modules

DBRT tablesand 2 implementing
instance tables alarms

v

Active alarm scanner and collector

Interactive alarm dispay(s)

Fig.5: Dataflow in the alarm system

3.4 Equipment archives and references

Each piece of equipment can have the values of several
attributes stored for each of 24 virtual accelerators. These
references are set to the operational values on request of
the operator, individually or for any set of them. Later,
the operator can use these vaues to restore
normal operation after experiments or corruption.

Any set of reference values can be stored in a named
archive. A large number of archives isallowed.
These archives are used to come back to settings which
gave good results in the past.

3.5 Generic user interface

After the operator logs in, he is presented with a menu
interface which permits him to select the working
environment and the programs to be started.

Generic programs are avalable for controlling
equipment and for displaying values in the desired format,
for single pieces of equipment or for various ensembles
(Fig.6). This is aided by meta-data which specify the
important properties for each class.

All this is data-driven, with data coming from the RDB

viaDBRT [4].

5 1§ E]
£y coy

|Ref 512.15 amp. Ref 30.00 Amp.

| mit | 512.15 Amp. Init | 30.00 Anp.

| adaa aa Ad Aad

[912.15 Amp. 30.00 Amp.

| *¥v¥y ¥v¥ Y TV

| AQN: 0.00 Amp. AQN: 30.09 Amp.

|] I

Fig.6: Knobs for setting values of accelerator parameters.

3.6 Supercycle editor

An interactive program permits the operator to set up
the various beams and cycles which compose a supercycle.
All this is described with tables in the RDB which
also contains an archive of useful past cycles, beams and
supercycles[5].

3.7 Expert systems

A few expert systems have been built, using the database

as aknowledge base:

- An experimental system relating beam data and
aarms[6].
A set-up system for initialising the equipment
interface and the equipment with a specialy made
inference engine [7].
A system converting rules to SQL statements for
checking the compatibility of cycles in a
supercycle[8].

These systems work well but there is no unified
approach. We think it would be logical to put both facts and
rulesin a relational database. Some means of indexing the
rules would avoid linear searches through huge rule bases.
What is missing is an inference engine integrated in the
database, perhaps based on an extension of the SQL
language. This marriage between RDBMS and
expert systems seems natural to us but database designers
have other priorities at the moment.

3.8 Data extraction from drawings

A lot of information about the control system is
contained in drawings made with the help of Computer
Aided Drawing systems. It would be useful to be able
to extract the geographical location of a component or the
number of a cable between two connectors. There are
however no accepted data format standards and little
provision is made for extracting information beyond part
lists. Some way to query the data with at least a subset of
SQL isdesirable.

We tried automatic information extraction from lists that
could be generated but this was not implemented because

the efforts were out of proportion to the benefits.

3.9 Other applications

Independently developed applications may use the core
tables and add tables of their own, integrated with the core
data by agreeing on common identifiers. Examples are:
ABS [9] which describes beam paths, magnets, and
monitors in order to calculate operational settings
to steer the beam.
NAOS [10] which controls a system for acquiring and
digitising signals for display and reference.

4 Why a relational database ?

We make considerable efforts to reconstruct
software objects from data in the database, so you may ask
why we do not use an object oriented database. The
advantages of a relational database for accelerator controls
are

The data are in a safe environment, well protected
from unintentional changes by faulty programs.

Data access is with the standard SQL language and
is not restricted to a set of closely related programs.
The rules for modelling complex structures in a
relational database are well known and rather easy
to apply with some experience.

The resulting tables are well adapted for filling-in the
data through forms.

Strong data relations are grouped in tables while
weaker relations can be left implicit, which keeps the
structure simple and versatile.

Object views adapted to particular applications can be
derived with SQL statements. This may be inefficient
but it is straightforward and fast enough for the
applications which are of interest here.

Most large and complex control systems will grow,
have frequent modifications, and often whole new
subsystems have to be integrated without disturbing
existing applications. All this is rather easy with a
relational database.

Version 8 of Oracle, now becoming available, has
many new object-oriented features, implemented on top of
the RDBMS. It is not yet clear how we can use these
features and whether they will make things smpler.

Of more immediate interest is support for storage,
display, and querying, of complex datatypes like text,
images, video, and sound. Especially important for us
is support for collections such as arrays and lists. These
developments fit perfectly in the relational model.

5 Conclusion

We have demonstrated that it is quite possible to store
amost all configuration data and many operational data in
a relational database. These data can be used to generate
interface modules, install programs, and provide programs
with data. The database is especially useful if the whole
system is integrated and not just a number of unrelated
subsystems. This requires close collaboration between the
database section, responsible for the structure of the core
tables, and the application programmers. An important side
effect of a central data store is the availability of the
information on the Web, for local use and externa
documentation.

References

[1] L.Casalegno, J.Cuperus, C.H.Sicard, Process
equipment data organisation in CERN PS controls,
ICALEPCS-89, Nucl. Instr. & Meth. A293 (1990)
412-415.

[2] J.Cuperus,A.Gagnaire, Automatic Generation of
configuration files for a distributed control system,
ICALEPCS-95, Nucl. Instr. & Meth.

A352 (1996) 148-153.

[3] JM. Bouche, J.Cuperus, M.Lelaizant, The datadriven
alarm system for CERN PS accelerators, ICALEPCS-
93, Nucl. Instr. & Meth. A352 (1994) 196-198.

[4] J.Cuperus, F.Di Maio, C.H.Sicard, The operator
interface to the equipment of the CERN PS
accelerators, |CALEPCS-93, Nucl. Instr. and Meth.
A352 (1994) 346-349.

[5] JLewis, V.Sikolenko, The new CERN PStiming
system, ICALEPCS-93, Nucl. Instr. & Meth.

A352 (1994) 91-93.

[6] P.Skarek, L.Varga, Multi-agent cooperation for
particle accelerator control, Expert Systems with
applicationsVol.11 No.4 (1996) 481-487
(Pergamon / Elsevier Science Ltd).

[7] G.Daems, V.Filimonov, V.Homutnikov,

F.Perriollat, Yu.Riabov, P.Skarek, A knowledge based
control method, ICALEPCS-93, Nucl. Instr. & Meth,
A352 (1994) 325-328.

[8] JLewis, P.Skarek, L.Varga, A rule-based consultant
for accelerator beam scheduling used in the CERN PS
complex, ICALEPCS-95, Nucl. Instr. & Meth.

A352 (1996) 703-706.

[9] B.Autin, F.di Maio, M.Gourber-Pace, M.Lindroos,
J.Schinzel, Database for accelerator optics, this
conference.

[10] B.Dupuy, P.Fernier, B.Frammery, S.Pasinelli, A VXI
system for observation of distributed analog signals.
RT93, Eight Conference on Real-Time Computer
Applications, June 8-11, 1993, Vancouver, Canada.

