D38 Monte-Carlo simulations of the vacuum performance of differential pumps at the Advanced Photon Source

C. Liu, D. Shu, and T. M. Kuzay

Advanced Photon Source, Argonne National Lab, Argonne, IL 60439

R. Kersevan

Wilson Lab of Nuclear Studies, Cornell University, Ithaca, NY 14853

Monte-Carlo computer simulations have been successfully applied in the design of vacuum systems. These simulations allow the user to check the vacuum performance without needing to make a prototype of the vacuum system. In this paper, we demonstrate the effectiveness and aptitude of these simulations in the design of differential pumps for synchrotron radiation beamlines. Eventually, a good number of the beamline front ends at the Advanced Photon Source (APS) will use differential pumps to protect the synchrotron storage ring vacuum. A Monte-Carlo computer program is used to calculate the molecular flow transmission and pressure distribution across the differential pump. A differential pump system, which consists of two 170 l/s ion pumps with three conductance-limiting apertures, was previously tested on an APS insertion-device beamline front end. Pressure distribution measurements using controlled leaks demonstrated a pressure difference of less than three decades across the differential pump. A new differential pump utilizes a fixed mask between two 170 l/s ion pumps. The fixed mask is used in the beamline to confine the photon beam, which has a conical channel with a small cross section of $4.5 \times 4.5 \text{ mm}^2$ in the far end. Monte-Carlo simulations indicate that this configuration significantly improves the pressure reduction capability of the differential pump, to ~5 x 10⁻⁵, within the operational range from $\sim 10^4$ to 10^{10} Torr. The lower end of pressure is limited by outgassing from front-end components and the higher end by the pumping ability of the ion pump.

Work supported by the U. S. Department of Energy BES-Materials Science under contract W-31-109-ENG-38.