C05 On the design and performance of a 2T permanent magnet wiggler for the Stanford Synchrotron Radiation Laboratory

Z. J. J. Stekly, C. Gardner and P. Domigan

Field Effects Division, Intermagnetics General Corp., 6 Eastern Road, Acton, MA 01720

The Beamline 9 Wiggler was designed to produce a 16 milliradian fan of high energy x-rays into 3 experimental stations. The device had a 26-cm period and contained 7.5 full strength periods. The minimum air gap was 2.1 cm. At minimum gap the peak field was specified to be \geq 1.9 Tesla and the half period integrated field strength was specified to be greater than or equal to 16.646 T-cm.

A combination of analytical, PANDIRA, and scale models were used to develop a novel "compact pole" magnetic design. This design enabled us to achieve 2.04 T peak field while maintaining a minimum of 17.816 T-cm half period integrated field strength. The magnetic performance of the device was confirmed through the use of an IGC designed Hall Probe scanning system and long and short coil measurements.