B12 Design and analysis of a high heat load pin-post monochromator crystal with integral water manifold

W. Schildkamp

Consortium for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637

T. Tonnessen

Rocketdyne Albuquerque Operations, 2511 C. Broadbent Parkway, N.E., Albuquerque, NM 87107

Conventional mini-channel water cooling geometry will not perform satisfactorily for x-radiation from a wiggler source at the Advanced Photon Source. For closed gap wiggler operation cryogenic silicon appears to be the only option for crystals in Bragg-Bragg geometry. For operation of the wiggler at more modest critical energies (< 17 keV), the first crystal can be cooled by a pin-post cooling scheme, using water at room temperature as a coolant. In order to limit the water consumption to 4 gpm and hence risk of introducing vibrations to the crystal, the intensely cooled area of the crystal was matched to the footprint of the beam, leaving a less cooled area of the crystal subject to survival in a mis-steered beam but not to perform as a monochro-mator. The manifold design avoids large areas of high water pressure which would bow the crystal. We present here the design of a pin-post monochromator consisting of a four layer silicon manifold system and an integrally bonded 39% nickel-iron alloy base plate. A trans-parent prototype of the design will be exhibited. Fabrication techniques and design advantages will be discussed.